Nothing
lfMsPGOcc <- function(occ.formula, det.formula, data, inits, priors,
n.factors, n.samples,
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.samples),
n.thin = 1, n.chains = 1,
k.fold, k.fold.threads = 1, k.fold.seed = 100,
k.fold.only = FALSE, ...){
ptm <- proc.time()
logit <- function(theta, a = 0, b = 1) {log((theta-a)/(b-theta))}
logit.inv <- function(z, a = 0, b = 1) {b-(b-a)/(1+exp(z))}
rigamma <- function(n, a, b){
1/rgamma(n = n, shape = a, rate = b)
}
# Make it look nice
if (verbose) {
cat("----------------------------------------\n");
cat("\tPreparing to run the model\n");
cat("----------------------------------------\n");
}
# Check for unused arguments ------------------------------------------
formal.args <- names(formals(sys.function(sys.parent())))
elip.args <- names(list(...))
for(i in elip.args){
if(! i %in% formal.args)
warning("'",i, "' is not an argument")
}
# Call ----------------------------------------------------------------
# Returns a call in which all of the specified arguments are
# specified by their full names.
cl <- match.call()
# Some initial checks -------------------------------------------------
if (missing(data)) {
stop("error: data must be specified")
}
if (!is.list(data)) {
stop("error: data must be a list")
}
names(data) <- tolower(names(data))
if (!'y' %in% names(data)) {
stop("error: detection-nondetection data y must be specified in data")
}
if (length(dim(data$y)) != 3) {
stop("error: detection-nondetection data y must be a three-dimensional array with dimensions corresponding to species, sites, and replicates.")
}
y <- data$y
sp.names <- attr(y, 'dimnames')[[1]]
if (!'occ.covs' %in% names(data)) {
if (occ.formula == ~ 1) {
if (verbose) {
message("occupancy covariates (occ.covs) not specified in data.\nAssuming intercept only occupancy model.\n")
}
data$occ.covs <- matrix(1, dim(y)[2], 1)
} else {
stop("error: occ.covs must be specified in data for an occupancy model with covariates")
}
}
if (!'det.covs' %in% names(data)) {
if (det.formula == ~ 1) {
if (verbose) {
message("detection covariates (det.covs) not specified in data.\nAssuming interept only detection model.\n")
}
data$det.covs <- list(int = matrix(1, dim(y)[2], dim(y)[3]))
} else {
stop("error: det.covs must be specified in data for a detection model with covariates")
}
}
if (!missing(k.fold)) {
if (!is.numeric(k.fold) | length(k.fold) != 1 | k.fold < 2) {
stop("error: k.fold must be a single integer value >= 2")
}
}
if (missing(n.factors)) {
stop("error: n.factors must be specified for a latent factor occupancy model")
}
if (!'coords' %in% names(data)) {
stop("error: coords must be specified in data for a latent factor occupancy model.")
}
coords <- as.matrix(data$coords)
# First subset detection covariates to only use those that are included in the analysis.
data$det.covs <- data$det.covs[names(data$det.covs) %in% all.vars(det.formula)]
# Null model support
if (length(data$det.covs) == 0) {
data$det.covs <- list(int = rep(1, dim(y)[2]))
}
# Make both covariates a data frame. Unlist is necessary for when factors
# are supplied.
data$det.covs <- data.frame(lapply(data$det.covs, function(a) unlist(c(a))))
binom <- FALSE
# Check if all detection covariates are at site level, and simplify the data
# if necessary
y.big <- y
if (nrow(data$det.covs) == dim(y)[2]) {
# Convert data to binomial form
y <- apply(y, c(1, 2), sum, na.rm = TRUE)
binom <- TRUE
}
data$occ.covs <- as.data.frame(data$occ.covs)
# Check whether random effects are sent in as numeric, and
# return error if they are.
# Occurrence ----------------------
if (!is.null(findbars(occ.formula))) {
occ.re.names <- sapply(findbars(occ.formula), all.vars)
for (i in 1:length(occ.re.names)) {
if (is(data$occ.covs[, occ.re.names[i]], 'factor')) {
stop(paste("error: random effect variable ", occ.re.names[i], " specified as a factor. Random effect variables must be specified as numeric.", sep = ''))
}
if (is(data$occ.covs[, occ.re.names[i]], 'character')) {
stop(paste("error: random effect variable ", occ.re.names[i], " specified as character. Random effect variables must be specified as numeric.", sep = ''))
}
}
}
# Detection -----------------------
if (!is.null(findbars(det.formula))) {
det.re.names <- sapply(findbars(det.formula), all.vars)
for (i in 1:length(det.re.names)) {
if (is(data$det.covs[, det.re.names[i]], 'factor')) {
stop(paste("error: random effect variable ", det.re.names[i], " specified as a factor. Random effect variables must be specified as numeric.", sep = ''))
}
if (is(data$det.covs[, det.re.names[i]], 'character')) {
stop(paste("error: random effect variable ", det.re.names[i], " specified as character. Random effect variables must be specified as numeric.", sep = ''))
}
}
}
# Checking missing values ---------------------------------------------
# y -------------------------------
y.na.test <- apply(y.big, c(1, 2), function(a) sum(!is.na(a)))
if (sum(y.na.test == 0) > 0) {
stop("error: some sites in y have all missing detection histories. Remove these sites from all objects in the 'data' argument, then use 'predict' to obtain predictions at these locations if desired.")
}
# occ.covs ------------------------
if (sum(is.na(data$occ.covs)) != 0) {
stop("error: missing values in occ.covs. Please remove these sites from all objects in data or somehow replace the NA values with non-missing values (e.g., mean imputation).")
}
# det.covs ------------------------
if (!binom) {
for (i in 1:ncol(data$det.covs)) {
# Note that this assumes the same detection history for each species.
if (sum(is.na(data$det.covs[, i])) > sum(is.na(y.big[1, , ]))) {
stop("error: some elements in det.covs have missing values where there is an observed data value in y. Please either replace the NA values in det.covs with non-missing values (e.g., mean imputation) or set the corresponding values in y to NA where the covariate is missing.")
}
}
# Misalignment between y and det.covs
y.missing <- which(is.na(y[1, , ]))
det.covs.missing <- lapply(data$det.covs, function(a) which(is.na(a)))
for (i in 1:length(det.covs.missing)) {
tmp.indx <- !(y.missing %in% det.covs.missing[[i]])
if (sum(tmp.indx) > 0) {
if (i == 1 & verbose) {
message("There are missing values in data$y with corresponding non-missing values in data$det.covs.\nRemoving these site/replicate combinations for fitting the model.")
}
data$det.covs[y.missing, i] <- NA
}
}
}
# det.covs when binom == TRUE -----
if (binom) {
if (sum(is.na(data$det.covs)) != 0) {
stop("error: missing values in site-level det.covs. Please remove these sites from all objects in data or somehow replace the NA values with non-missing values (e.g., mean imputation).")
}
}
# Formula -------------------------------------------------------------
# Occupancy -----------------------
if (missing(occ.formula)) {
stop("error: occ.formula must be specified")
}
if (is(occ.formula, 'formula')) {
tmp <- parseFormula(occ.formula, data$occ.covs)
X <- as.matrix(tmp[[1]])
X.re <- as.matrix(tmp[[4]])
x.re.names <- colnames(X.re)
x.names <- tmp[[2]]
} else {
stop("error: occ.formula is misspecified")
}
# Get RE level names
re.level.names <- lapply(data$occ.covs[, x.re.names, drop = FALSE],
function (a) sort(unique(a)))
# Detection -----------------------
if (missing(det.formula)) {
stop("error: det.formula must be specified")
}
if (is(det.formula, 'formula')) {
tmp <- parseFormula(det.formula, data$det.covs)
X.p <- as.matrix(tmp[[1]])
X.p.re <- as.matrix(tmp[[4]])
x.p.re.names <- colnames(X.p.re)
x.p.names <- tmp[[2]]
} else {
stop("error: det.formula is misspecified")
}
p.re.level.names <- lapply(data$det.covs[, x.p.re.names, drop = FALSE],
function (a) sort(unique(a)))
# Extract data from inputs --------------------------------------------
# Number of species
N <- dim(y)[1]
# Number of latent factors
q <- n.factors
# Number of occupancy parameters
p.occ <- ncol(X)
# Number of occupancy random effect parameters
p.occ.re <- ncol(X.re)
# Number of detection parameters
p.det <- ncol(X.p)
# Number of detection random effect parameters
p.det.re <- ncol(X.p.re)
# Number of latent occupancy random effect values
n.occ.re <- length(unlist(apply(X.re, 2, unique)))
n.occ.re.long <- apply(X.re, 2, function(a) length(unique(a)))
# Number of latent detection random effect values
n.det.re <- length(unlist(apply(X.p.re, 2, unique)))
n.det.re.long <- apply(X.p.re, 2, function(a) length(unique(a)))
if (p.det.re == 0) n.det.re.long <- 0
# Number of sites
J <- nrow(X)
# Number of repeat visits
n.rep <- apply(y.big[1, , , drop = FALSE], 2, function(a) sum(!is.na(a)))
rep.indx <- list()
for (j in 1:J) {
rep.indx[[j]] <- which(!is.na(y.big[1, j, ]))
}
K.max <- dim(y.big)[3]
# Because I like K better than n.rep
K <- n.rep
if (missing(n.samples)) {
stop("error: must specify number of MCMC samples")
}
if (n.burn > n.samples) {
stop("error: n.burn must be less than n.samples")
}
if (n.thin > n.samples) {
stop("error: n.thin must be less than n.samples")
}
# Check if n.burn, n.thin, and n.samples result in an integer and error if otherwise.
if (((n.samples - n.burn) / n.thin) %% 1 != 0) {
stop("the number of posterior samples to save ((n.samples - n.burn) / n.thin) is not a whole number. Please respecify the MCMC criteria such that the number of posterior samples saved is a whole number.")
}
if (!missing(k.fold)) {
if (!is.numeric(k.fold) | length(k.fold) != 1 | k.fold < 2) {
stop("error: k.fold must be a single integer value >= 2")
}
}
# Get indices to map z to y -------------------------------------------
if (!binom) {
z.long.indx <- rep(1:J, dim(y.big)[3])
z.long.indx <- z.long.indx[!is.na(c(y.big[1, , ]))]
# Subtract 1 for indices in C
z.long.indx <- z.long.indx - 1
} else {
z.long.indx <- 0:(J - 1)
}
# y is order as follows: sorted by visit, site within visit, species within site
# This will match up with z, which is sorted by site, then species within site.
# This matches up with spMsPGOcc.
y <- c(y)
# Assumes the missing data are constant across species, which seems likely,
# but may eventually need some updating.
# Removing missing observations when covariate data are available but
# there are missing detection-nondetection data.
names.long <- which(!is.na(c(y.big[1, , ])))
if (nrow(X.p) == length(y) / N) {
if (!binom) {
X.p <- X.p[!is.na(c(y.big[1, , ])), , drop = FALSE]
}
}
if (nrow(X.p.re) == length(y) / N & p.det.re > 0) {
if (!binom) {
X.p.re <- X.p.re[!is.na(c(y.big[1, , ])), , drop = FALSE]
}
}
y <- y[!is.na(y)]
# Number of pseudoreplicates
n.obs <- nrow(X.p)
# Get random effect matrices all set ----------------------------------
if (p.occ.re > 1) {
for (j in 2:p.occ.re) {
X.re[, j] <- X.re[, j] + max(X.re[, j - 1]) + 1
}
}
if (p.det.re > 1) {
for (j in 2:p.det.re) {
X.p.re[, j] <- X.p.re[, j] + max(X.p.re[, j - 1]) + 1
}
}
# Priors --------------------------------------------------------------
if (missing(priors)) {
priors <- list()
}
names(priors) <- tolower(names(priors))
# beta.comm -----------------------
if ("beta.comm.normal" %in% names(priors)) {
if (!is.list(priors$beta.comm.normal) | length(priors$beta.comm.normal) != 2) {
stop("error: beta.comm.normal must be a list of length 2")
}
mu.beta.comm <- priors$beta.comm.normal[[1]]
sigma.beta.comm <- priors$beta.comm.normal[[2]]
if (length(mu.beta.comm) != p.occ & length(mu.beta.comm) != 1) {
if (p.occ == 1) {
stop(paste("error: beta.comm.normal[[1]] must be a vector of length ",
p.occ, " with elements corresponding to beta.comms' mean", sep = ""))
} else {
stop(paste("error: beta.comm.normal[[1]] must be a vector of length ",
p.occ, " or 1 with elements corresponding to beta.comms' mean", sep = ""))
}
}
if (length(sigma.beta.comm) != p.occ & length(sigma.beta.comm) != 1) {
if (p.occ == 1) {
stop(paste("error: beta.comm.normal[[2]] must be a vector of length ",
p.occ, " with elements corresponding to beta.comms' variance", sep = ""))
} else {
stop(paste("error: beta.comm.normal[[2]] must be a vector of length ",
p.occ, " or 1 with elements corresponding to beta.comms' variance", sep = ""))
}
}
if (length(sigma.beta.comm) != p.occ) {
sigma.beta.comm <- rep(sigma.beta.comm, p.occ)
}
if (length(mu.beta.comm) != p.occ) {
mu.beta.comm <- rep(mu.beta.comm, p.occ)
}
Sigma.beta.comm <- sigma.beta.comm * diag(p.occ)
} else {
if (verbose) {
message("No prior specified for beta.comm.normal.\nSetting prior mean to 0 and prior variance to 2.72\n")
}
mu.beta.comm <- rep(0, p.occ)
sigma.beta.comm <- rep(2.72, p.occ)
Sigma.beta.comm <- diag(p.occ) * 2.72
}
# alpha.comm -----------------------
if ("alpha.comm.normal" %in% names(priors)) {
if (!is.list(priors$alpha.comm.normal) | length(priors$alpha.comm.normal) != 2) {
stop("error: alpha.comm.normal must be a list of length 2")
}
mu.alpha.comm <- priors$alpha.comm.normal[[1]]
sigma.alpha.comm <- priors$alpha.comm.normal[[2]]
if (length(mu.alpha.comm) != p.det & length(mu.alpha.comm) != 1) {
if (p.det == 1) {
stop(paste("error: alpha.comm.normal[[1]] must be a vector of length ",
p.det, " with elements corresponding to alpha.comms' mean", sep = ""))
} else {
stop(paste("error: alpha.comm.normal[[1]] must be a vector of length ",
p.det, " or 1 with elements corresponding to alpha.comms' mean", sep = ""))
}
}
if (length(sigma.alpha.comm) != p.det & length(sigma.alpha.comm) != 1) {
if (p.det == 1) {
stop(paste("error: alpha.comm.normal[[2]] must be a vector of length ",
p.det, " with elements corresponding to alpha.comms' variance", sep = ""))
} else {
stop(paste("error: alpha.comm.normal[[2]] must be a vector of length ",
p.det, " or 1 with elements corresponding to alpha.comms' variance", sep = ""))
}
}
if (length(sigma.alpha.comm) != p.det) {
sigma.alpha.comm <- rep(sigma.alpha.comm, p.det)
}
if (length(mu.alpha.comm) != p.det) {
mu.alpha.comm <- rep(mu.alpha.comm, p.det)
}
Sigma.alpha.comm <- sigma.alpha.comm * diag(p.det)
} else {
if (verbose) {
message("No prior specified for alpha.comm.normal.\nSetting prior mean to 0 and prior variance to 2.72\n")
}
mu.alpha.comm <- rep(0, p.det)
sigma.alpha.comm <- rep(2.72, p.det)
Sigma.alpha.comm <- diag(p.det) * 2.72
}
# tau.sq.beta -----------------------
if ("tau.sq.beta.ig" %in% names(priors)) {
if (!is.list(priors$tau.sq.beta.ig) | length(priors$tau.sq.beta.ig) != 2) {
stop("error: tau.sq.beta.ig must be a list of length 2")
}
tau.sq.beta.a <- priors$tau.sq.beta.ig[[1]]
tau.sq.beta.b <- priors$tau.sq.beta.ig[[2]]
if (length(tau.sq.beta.a) != p.occ & length(tau.sq.beta.a) != 1) {
if (p.occ == 1) {
stop(paste("error: tau.sq.beta.ig[[1]] must be a vector of length ",
p.occ, " with elements corresponding to tau.sq.betas' shape", sep = ""))
} else {
stop(paste("error: tau.sq.beta.ig[[1]] must be a vector of length ",
p.occ, " or 1 with elements corresponding to tau.sq.betas' shape", sep = ""))
}
}
if (length(tau.sq.beta.b) != p.occ & length(tau.sq.beta.b) != 1) {
if (p.occ == 1) {
stop(paste("error: tau.sq.beta.ig[[2]] must be a vector of length ",
p.occ, " with elements corresponding to tau.sq.betas' scale", sep = ""))
} else {
stop(paste("error: tau.sq.beta.ig[[2]] must be a vector of length ",
p.occ, " or 1 with elements corresponding to tau.sq.betas' scale", sep = ""))
}
}
if (length(tau.sq.beta.a) != p.occ) {
tau.sq.beta.a <- rep(tau.sq.beta.a, p.occ)
}
if (length(tau.sq.beta.b) != p.occ) {
tau.sq.beta.b <- rep(tau.sq.beta.b, p.occ)
}
} else {
if (verbose) {
message("No prior specified for tau.sq.beta.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
}
tau.sq.beta.a <- rep(0.1, p.occ)
tau.sq.beta.b <- rep(0.1, p.occ)
}
# tau.sq.alpha -----------------------
if ("tau.sq.alpha.ig" %in% names(priors)) {
if (!is.list(priors$tau.sq.alpha.ig) | length(priors$tau.sq.alpha.ig) != 2) {
stop("error: tau.sq.alpha.ig must be a list of length 2")
}
tau.sq.alpha.a <- priors$tau.sq.alpha.ig[[1]]
tau.sq.alpha.b <- priors$tau.sq.alpha.ig[[2]]
if (length(tau.sq.alpha.a) != p.det & length(tau.sq.alpha.a) != 1) {
if (p.det == 1) {
stop(paste("error: tau.sq.alpha.ig[[1]] must be a vector of length ",
p.det, " with elements corresponding to tau.sq.alphas' shape", sep = ""))
} else {
stop(paste("error: tau.sq.alpha.ig[[1]] must be a vector of length ",
p.det, " or 1 with elements corresponding to tau.sq.alphas' shape", sep = ""))
}
}
if (length(tau.sq.alpha.b) != p.det & length(tau.sq.alpha.b) != 1) {
if (p.det == 1) {
stop(paste("error: tau.sq.alpha.ig[[2]] must be a vector of length ",
p.det, " with elements corresponding to tau.sq.alphas' scale", sep = ""))
} else {
stop(paste("error: tau.sq.alpha.ig[[2]] must be a vector of length ",
p.det, " or 1 with elements corresponding to tau.sq.alphas' scale", sep = ""))
}
}
if (length(tau.sq.alpha.a) != p.det) {
tau.sq.alpha.a <- rep(tau.sq.alpha.a, p.det)
}
if (length(tau.sq.alpha.b) != p.det) {
tau.sq.alpha.b <- rep(tau.sq.alpha.b, p.det)
}
} else {
if (verbose) {
message("No prior specified for tau.sq.alpha.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
}
tau.sq.alpha.a <- rep(0.1, p.det)
tau.sq.alpha.b <- rep(0.1, p.det)
}
# sigma.sq.psi --------------------
if (p.occ.re > 0) {
if ("sigma.sq.psi.ig" %in% names(priors)) {
if (!is.list(priors$sigma.sq.psi.ig) | length(priors$sigma.sq.psi.ig) != 2) {
stop("error: sigma.sq.psi.ig must be a list of length 2")
}
sigma.sq.psi.a <- priors$sigma.sq.psi.ig[[1]]
sigma.sq.psi.b <- priors$sigma.sq.psi.ig[[2]]
if (length(sigma.sq.psi.a) != p.occ.re & length(sigma.sq.psi.a) != 1) {
if (p.occ.re == 1) {
stop(paste("error: sigma.sq.psi.ig[[1]] must be a vector of length ",
p.occ.re, " with elements corresponding to sigma.sq.psis' shape", sep = ""))
} else {
stop(paste("error: sigma.sq.psi.ig[[1]] must be a vector of length ",
p.occ.re, " or 1 with elements corresponding to sigma.sq.psis' shape", sep = ""))
}
}
if (length(sigma.sq.psi.b) != p.occ.re & length(sigma.sq.psi.b) != 1) {
if (p.occ.re == 1) {
stop(paste("error: sigma.sq.psi.ig[[2]] must be a vector of length ",
p.occ.re, " with elements corresponding to sigma.sq.psis' scale", sep = ""))
} else {
stop(paste("error: sigma.sq.psi.ig[[2]] must be a vector of length ",
p.occ.re, " or 1with elements corresponding to sigma.sq.psis' scale", sep = ""))
}
}
if (length(sigma.sq.psi.a) != p.occ.re) {
sigma.sq.psi.a <- rep(sigma.sq.psi.a, p.occ.re)
}
if (length(sigma.sq.psi.b) != p.occ.re) {
sigma.sq.psi.b <- rep(sigma.sq.psi.b, p.occ.re)
}
} else {
if (verbose) {
message("No prior specified for sigma.sq.psi.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
}
sigma.sq.psi.a <- rep(0.1, p.occ.re)
sigma.sq.psi.b <- rep(0.1, p.occ.re)
}
} else {
sigma.sq.psi.a <- 0
sigma.sq.psi.b <- 0
}
# sigma.sq.p --------------------
if (p.det.re > 0) {
if ("sigma.sq.p.ig" %in% names(priors)) {
if (!is.list(priors$sigma.sq.p.ig) | length(priors$sigma.sq.p.ig) != 2) {
stop("error: sigma.sq.p.ig must be a list of length 2")
}
sigma.sq.p.a <- priors$sigma.sq.p.ig[[1]]
sigma.sq.p.b <- priors$sigma.sq.p.ig[[2]]
if (length(sigma.sq.p.a) != p.det.re & length(sigma.sq.p.a) != 1) {
if (p.det.re == 1) {
stop(paste("error: sigma.sq.p.ig[[1]] must be a vector of length ",
p.det.re, " with elements corresponding to sigma.sq.ps' shape", sep = ""))
} else {
stop(paste("error: sigma.sq.p.ig[[1]] must be a vector of length ",
p.det.re, " or 1 with elements corresponding to sigma.sq.ps' shape", sep = ""))
}
}
if (length(sigma.sq.p.b) != p.det.re & length(sigma.sq.p.b) != 1) {
if (p.det.re == 1) {
stop(paste("error: sigma.sq.p.ig[[2]] must be a vector of length ",
p.det.re, " with elements corresponding to sigma.sq.ps' scale", sep = ""))
} else {
stop(paste("error: sigma.sq.p.ig[[2]] must be a vector of length ",
p.det.re, " or 1 with elements corresponding to sigma.sq.ps' scale", sep = ""))
}
}
if (length(sigma.sq.p.a) != p.det.re) {
sigma.sq.p.a <- rep(sigma.sq.p.a, p.det.re)
}
if (length(sigma.sq.p.b) != p.det.re) {
sigma.sq.p.b <- rep(sigma.sq.p.b, p.det.re)
}
} else {
if (verbose) {
message("No prior specified for sigma.sq.p.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
}
sigma.sq.p.a <- rep(0.1, p.det.re)
sigma.sq.p.b <- rep(0.1, p.det.re)
}
} else {
sigma.sq.p.a <- 0
sigma.sq.p.b <- 0
}
# Initial values --------------------------------------------------------
if (missing(inits)) {
inits <- list()
}
names(inits) <- tolower(names(inits))
# z -------------------------------
# ORDER: an N x J matrix sent in as a column-major vector ordered by site, then species
# within site.
if ("z" %in% names(inits)) {
z.inits <- inits$z
if (!is.matrix(z.inits)) {
stop(paste("error: initial values for z must be a matrix with dimensions ",
N, " x ", J, sep = ""))
}
if (nrow(z.inits) != N | ncol(z.inits) != J) {
stop(paste("error: initial values for z must be a matrix with dimensions ",
N, " x ", J, sep = ""))
}
z.test <- apply(y.big, c(1, 2), max, na.rm = TRUE)
init.test <- sum(z.inits < z.test)
if (init.test > 0) {
stop("error: initial values for latent occurrence (z) are invalid. Please re-specify inits$z so initial values are 1 if the species is observed at that site.")
}
} else {
z.inits <- apply(y.big, c(1, 2), max, na.rm = TRUE)
if (verbose) {
message("z is not specified in initial values.\nSetting initial values based on observed data\n")
}
}
# beta.comm -----------------------
# ORDER: a p.occ vector ordered by the effects in the formula.
if ("beta.comm" %in% names(inits)) {
beta.comm.inits <- inits[["beta.comm"]]
if (length(beta.comm.inits) != p.occ & length(beta.comm.inits) != 1) {
if (p.occ == 1) {
stop(paste("error: initial values for beta.comm must be of length ", p.occ,
sep = ""))
} else {
stop(paste("error: initial values for beta.comm must be of length ", p.occ,
, " or 1", sep = ""))
}
}
if (length(beta.comm.inits) != p.occ) {
beta.comm.inits <- rep(beta.comm.inits, p.occ)
}
} else {
beta.comm.inits <- rnorm(p.occ, mu.beta.comm, sqrt(sigma.beta.comm))
if (verbose) {
message('beta.comm is not specified in initial values.\nSetting initial values to random values from the prior distribution\n')
}
}
# alpha.comm -----------------------
# ORDER: a p.det vector ordered by the effects in the detection formula.
if ("alpha.comm" %in% names(inits)) {
alpha.comm.inits <- inits[["alpha.comm"]]
if (length(alpha.comm.inits) != p.det & length(alpha.comm.inits) != 1) {
if (p.det == 1) {
stop(paste("error: initial values for alpha.comm must be of length ", p.det,
sep = ""))
} else {
stop(paste("error: initial values for alpha.comm must be of length ", p.det,
, " or 1", sep = ""))
}
}
if (length(alpha.comm.inits) != p.det) {
alpha.comm.inits <- rep(alpha.comm.inits, p.det)
}
} else {
alpha.comm.inits <- rnorm(p.det, mu.alpha.comm, sqrt(sigma.alpha.comm))
if (verbose) {
message('alpha.comm is not specified in initial values.\nSetting initial values to random values from the prior distribution\n')
}
}
# tau.sq.beta ------------------------
# ORDER: a p.occ vector ordered by the effects in the occurrence formula
if ("tau.sq.beta" %in% names(inits)) {
tau.sq.beta.inits <- inits[["tau.sq.beta"]]
if (length(tau.sq.beta.inits) != p.occ & length(tau.sq.beta.inits) != 1) {
if (p.occ == 1) {
stop(paste("error: initial values for tau.sq.beta must be of length ", p.occ,
sep = ""))
} else {
stop(paste("error: initial values for tau.sq.beta must be of length ", p.occ,
" or 1", sep = ""))
}
}
if (length(tau.sq.beta.inits) != p.occ) {
tau.sq.beta.inits <- rep(tau.sq.beta.inits, p.occ)
}
} else {
tau.sq.beta.inits <- runif(p.occ, 0.5, 10)
if (verbose) {
message('tau.sq.beta is not specified in initial values.\nSetting initial values to random values between 0.5 and 10\n')
}
}
# tau.sq.alpha -----------------------
# ORDER: a p.det vector ordered by the effects in the detection formula.
if ("tau.sq.alpha" %in% names(inits)) {
tau.sq.alpha.inits <- inits[["tau.sq.alpha"]]
if (length(tau.sq.alpha.inits) != p.det & length(tau.sq.alpha.inits) != 1) {
if (p.det == 1) {
stop(paste("error: initial values for tau.sq.alpha must be of length ", p.det,
sep = ""))
} else {
stop(paste("error: initial values for tau.sq.alpha must be of length ", p.det,
" or 1", sep = ""))
}
}
if (length(tau.sq.alpha.inits) != p.det) {
tau.sq.alpha.inits <- rep(tau.sq.alpha.inits, p.det)
}
} else {
tau.sq.alpha.inits <- runif(p.det, 0.5, 10)
if (verbose) {
message('tau.sq.alpha is not specified in initial values.\nSetting initial values to random values between 0.5 and 10\n')
}
}
# beta ----------------------------
# ORDER: N x p.occ matrix sent in as a column-major vector ordered by
# parameter then species within parameter.
if ("beta" %in% names(inits)) {
beta.inits <- inits[["beta"]]
if (is.matrix(beta.inits)) {
if (ncol(beta.inits) != p.occ | nrow(beta.inits) != N) {
stop(paste("error: initial values for beta must be a matrix with dimensions ",
N, "x", p.occ, " or a single numeric value", sep = ""))
}
}
if (!is.matrix(beta.inits) & length(beta.inits) != 1) {
stop(paste("error: initial values for beta must be a matrix with dimensions ",
N, " x ", p.occ, " or a single numeric value", sep = ""))
}
if (length(beta.inits) == 1) {
beta.inits <- matrix(beta.inits, N, p.occ)
}
} else {
beta.inits <- matrix(rnorm(N * p.occ, beta.comm.inits, sqrt(tau.sq.beta.inits)), N, p.occ)
if (verbose) {
message('beta is not specified in initial values.\nSetting initial values to random values from the community-level normal distribution\n')
}
}
# Create a N * p.occ x 1 matrix of the species-level regression coefficients.
# This is ordered by parameter, then species within a parameter.
beta.inits <- c(beta.inits)
# alpha ----------------------------
# ORDER: N x p.det matrix sent in as a column-major vector ordered by
# parameter then species within parameter.
if ("alpha" %in% names(inits)) {
alpha.inits <- inits[["alpha"]]
if (is.matrix(alpha.inits)) {
if (ncol(alpha.inits) != p.det | nrow(alpha.inits) != N) {
stop(paste("error: initial values for alpha must be a matrix with dimensions ",
N, "x", p.det, " or a single numeric value", sep = ""))
}
}
if (!is.matrix(alpha.inits) & length(alpha.inits) != 1) {
stop(paste("error: initial values for alpha must be a matrix with dimensions ",
N, " x ", p.det, " or a single numeric value", sep = ""))
}
if (length(alpha.inits) == 1) {
alpha.inits <- matrix(alpha.inits, N, p.det)
}
} else {
alpha.inits <- matrix(rnorm(N * p.det, alpha.comm.inits, sqrt(tau.sq.alpha.inits)), N, p.det)
if (verbose) {
message('alpha is not specified in initial values.\nSetting initial values to random values from the community-level normal distribution\n')
}
}
# Create a N * p.det x 1 matrix of the species-level regression coefficients.
# This is ordered by parameter, then species within parameter.
alpha.inits <- c(alpha.inits)
# lambda ----------------------------
# ORDER: an N x q matrix sent in as a column-major vector, which is ordered by
# factor, then species within factor.
if ("lambda" %in% names(inits)) {
lambda.inits <- inits[["lambda"]]
if (!is.matrix(lambda.inits)) {
stop(paste("error: initial values for lambda must be a matrix with dimensions ",
N, " x ", q, sep = ""))
}
if (nrow(lambda.inits) != N | ncol(lambda.inits) != q) {
stop(paste("error: initial values for lambda must be a matrix with dimensions ",
N, " x ", q, sep = ""))
}
if (!all.equal(diag(lambda.inits), rep(1, q))) {
stop("error: diagonal of inits$lambda matrix must be all 1s")
}
if (sum(lambda.inits[upper.tri(lambda.inits)]) != 0) {
stop("error: upper triangle of inits$lambda must be all 0s")
}
} else {
lambda.inits <- matrix(0, N, q)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))
if (verbose) {
message("lambda is not specified in initial values.\nSetting initial values of the lower triangle to random values from a standard normal\n")
}
# lambda.inits are organized by factor, then by species. This is necessary for working
# with dgemv.
lambda.inits <- c(lambda.inits)
}
# sigma.sq.psi ------------------
# ORDER: a length p.occ.re vector ordered by the random effects in the formula.
if (p.occ.re > 0) {
if ("sigma.sq.psi" %in% names(inits)) {
sigma.sq.psi.inits <- inits[["sigma.sq.psi"]]
if (length(sigma.sq.psi.inits) != p.occ.re & length(sigma.sq.psi.inits) != 1) {
if (p.occ.re == 1) {
stop(paste("error: initial values for sigma.sq.psi must be of length ", p.occ.re,
sep = ""))
} else {
stop(paste("error: initial values for sigma.sq.psi must be of length ", p.occ.re,
" or 1", sep = ""))
}
}
if (length(sigma.sq.psi.inits) != p.occ.re) {
sigma.sq.psi.inits <- rep(sigma.sq.psi.inits, p.occ.re)
}
} else {
sigma.sq.psi.inits <- runif(p.occ.re, 0.5, 10)
if (verbose) {
message("sigma.sq.psi is not specified in initial values.\nSetting initial values to random values between 0.5 and 10\n")
}
}
beta.star.indx <- rep(0:(p.occ.re - 1), n.occ.re.long)
beta.star.inits <- rnorm(n.occ.re, 0, sqrt(sigma.sq.psi.inits[beta.star.indx + 1]))
beta.star.inits <- rep(beta.star.inits, N)
} else {
sigma.sq.psi.inits <- 0
beta.star.indx <- 0
beta.star.inits <- 0
}
# sigma.sq.p ------------------
# ORDER: a length p.det.re vector ordered by the random effects in the formula.
if (p.det.re > 0) {
if ("sigma.sq.p" %in% names(inits)) {
sigma.sq.p.inits <- inits[["sigma.sq.p"]]
if (length(sigma.sq.p.inits) != p.det.re & length(sigma.sq.p.inits) != 1) {
if (p.det.re == 1) {
stop(paste("error: initial values for sigma.sq.p must be of length ", p.det.re,
sep = ""))
} else {
stop(paste("error: initial values for sigma.sq.p must be of length ", p.det.re,
" or 1", sep = ""))
}
}
if (length(sigma.sq.p.inits) != p.det.re) {
sigma.sq.p.inits <- rep(sigma.sq.p.inits, p.det.re)
}
} else {
sigma.sq.p.inits <- runif(p.det.re, 0.5, 10)
if (verbose) {
message("sigma.sq.p is not specified in initial values.\nSetting initial values to random values between 0.5 and 10\n")
}
}
alpha.star.indx <- rep(0:(p.det.re - 1), n.det.re.long)
alpha.star.inits <- rnorm(n.det.re, 0, sqrt(sigma.sq.p.inits[alpha.star.indx + 1]))
alpha.star.inits <- rep(alpha.star.inits, N)
} else {
sigma.sq.p.inits <- 0
alpha.star.indx <- 0
alpha.star.inits <- 0
}
# Should initial values be fixed --
if ("fix" %in% names(inits)) {
fix.inits <- inits[["fix"]]
if ((fix.inits != TRUE) & (fix.inits != FALSE)) {
stop(paste("error: inits$fix must take value TRUE or FALSE"))
}
} else {
fix.inits <- FALSE
}
if (verbose & fix.inits & (n.chains > 1)) {
message("Fixing initial values across all chains\n")
}
# Set model.deviance to NA for returning when no cross-validation
model.deviance <- NA
curr.chain <- 1
# Set storage for all variables ---------------------------------------
storage.mode(y) <- "double"
storage.mode(z.inits) <- "double"
storage.mode(X.p) <- "double"
storage.mode(X) <- "double"
storage.mode(K) <- "double"
consts <- c(N, J, n.obs, p.occ, p.occ.re, n.occ.re,
p.det, p.det.re, n.det.re, q)
storage.mode(consts) <- "integer"
storage.mode(beta.inits) <- "double"
storage.mode(alpha.inits) <- "double"
storage.mode(beta.comm.inits) <- "double"
storage.mode(alpha.comm.inits) <- "double"
storage.mode(tau.sq.beta.inits) <- "double"
storage.mode(tau.sq.alpha.inits) <- "double"
storage.mode(lambda.inits) <- "double"
storage.mode(z.long.indx) <- "integer"
storage.mode(mu.beta.comm) <- "double"
storage.mode(Sigma.beta.comm) <- "double"
storage.mode(mu.alpha.comm) <- "double"
storage.mode(Sigma.alpha.comm) <- "double"
storage.mode(tau.sq.beta.a) <- "double"
storage.mode(tau.sq.beta.b) <- "double"
storage.mode(tau.sq.alpha.a) <- "double"
storage.mode(tau.sq.alpha.b) <- "double"
storage.mode(n.samples) <- "integer"
storage.mode(n.omp.threads) <- "integer"
storage.mode(verbose) <- "integer"
storage.mode(n.report) <- "integer"
# chain.info order: current chain, total number of chains
chain.info <- c(curr.chain, n.chains)
storage.mode(chain.info) <- "integer"
n.post.samples <- length(seq(from = n.burn + 1,
to = n.samples,
by = as.integer(n.thin)))
# samples.info order: burn-in, thinning rate, number of posterior samples
samples.info <- c(n.burn, n.thin, n.post.samples)
storage.mode(samples.info) <- "integer"
# For detection random effects
storage.mode(X.p.re) <- "integer"
alpha.level.indx <- sort(unique(c(X.p.re)))
storage.mode(alpha.level.indx) <- "integer"
storage.mode(n.det.re.long) <- "integer"
storage.mode(sigma.sq.p.inits) <- "double"
storage.mode(sigma.sq.p.a) <- "double"
storage.mode(sigma.sq.p.b) <- "double"
storage.mode(alpha.star.inits) <- "double"
storage.mode(alpha.star.indx) <- "integer"
# For occurrence random effects
storage.mode(X.re) <- "integer"
beta.level.indx <- sort(unique(c(X.re)))
storage.mode(beta.level.indx) <- "integer"
storage.mode(sigma.sq.psi.inits) <- "double"
storage.mode(sigma.sq.psi.a) <- "double"
storage.mode(sigma.sq.psi.b) <- "double"
storage.mode(beta.star.inits) <- "double"
storage.mode(beta.star.indx) <- "integer"
# Fit the model ---------------------------------------------------------
out.tmp <- list()
out <- list()
if (!k.fold.only) {
for (i in 1:n.chains) {
# Change initial values if i > 1
if ((i > 1) & (!fix.inits)) {
beta.comm.inits <- rnorm(p.occ, mu.beta.comm, sqrt(sigma.beta.comm))
alpha.comm.inits <- rnorm(p.det, mu.alpha.comm, sqrt(sigma.alpha.comm))
tau.sq.beta.inits <- runif(p.occ, 0.5, 10)
tau.sq.alpha.inits <- runif(p.det, 0.5, 10)
beta.inits <- matrix(rnorm(N * p.occ, beta.comm.inits,
sqrt(tau.sq.beta.inits)), N, p.occ)
beta.inits <- c(beta.inits)
alpha.inits <- matrix(rnorm(N * p.det, alpha.comm.inits,
sqrt(tau.sq.alpha.inits)), N, p.det)
alpha.inits <- c(alpha.inits)
lambda.inits <- matrix(0, N, q)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))
lambda.inits <- c(lambda.inits)
if (p.det.re > 0) {
sigma.sq.p.inits <- runif(p.det.re, 0.5, 10)
alpha.star.inits <- rnorm(n.det.re, 0, sqrt(sigma.sq.p.inits[alpha.star.indx + 1]))
alpha.star.inits <- rep(alpha.star.inits, N)
}
if (p.occ.re > 0) {
sigma.sq.psi.inits <- runif(p.occ.re, 0.5, 10)
beta.star.inits <- rnorm(n.occ.re, 0, sqrt(sigma.sq.psi.inits[beta.star.indx + 1]))
beta.star.inits <- rep(beta.star.inits, N)
}
}
storage.mode(chain.info) <- "integer"
# Run the model in C
out.tmp[[i]] <- .Call("lfMsPGOcc", y, X, X.p, X.re, X.p.re, consts,
K, n.occ.re.long, n.det.re.long, beta.inits, alpha.inits,
z.inits, beta.comm.inits,
alpha.comm.inits, tau.sq.beta.inits,
tau.sq.alpha.inits, lambda.inits,
sigma.sq.psi.inits, sigma.sq.p.inits,
beta.star.inits, alpha.star.inits,
z.long.indx, beta.star.indx, beta.level.indx,
alpha.star.indx, alpha.level.indx, mu.beta.comm,
mu.alpha.comm, Sigma.beta.comm, Sigma.alpha.comm,
tau.sq.beta.a, tau.sq.beta.b, tau.sq.alpha.a,
tau.sq.alpha.b, sigma.sq.psi.a, sigma.sq.psi.b,
sigma.sq.p.a, sigma.sq.p.b,
n.samples, n.omp.threads, verbose, n.report,
samples.info, chain.info)
chain.info[1] <- chain.info[1] + 1
}
# Calculate R-Hat ---------------
out$rhat <- list()
if (n.chains > 1) {
# as.vector removes the "Upper CI" when there is only 1 variable.
out$rhat$beta.comm <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$beta.comm.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
out$rhat$alpha.comm <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$alpha.comm.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
out$rhat$tau.sq.beta <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$tau.sq.beta.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
out$rhat$tau.sq.alpha <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$tau.sq.alpha.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
out$rhat$beta <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$beta.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
out$rhat$alpha <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$alpha.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
lambda.mat <- matrix(lambda.inits, N, q)
out$rhat$lambda.lower.tri <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$lambda.samples[c(lower.tri(lambda.mat)), ])))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
if (p.det.re > 0) {
out$rhat$sigma.sq.p <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$sigma.sq.p.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
}
if (p.occ.re > 0) {
out$rhat$sigma.sq.psi <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$sigma.sq.psi.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
}
} else {
out$rhat$beta.comm <- rep(NA, p.occ)
out$rhat$alpha.comm <- rep(NA, p.det)
out$rhat$tau.sq.beta <- rep(NA, p.occ)
out$rhat$tau.sq.alpha <- rep(NA, p.det)
out$rhat$beta <- rep(NA, p.occ * N)
out$rhat$alpha <- rep(NA, p.det * N)
if (p.det.re > 0) {
out$rhat$sigma.sq.p <- rep(NA, p.det.re)
}
if (p.occ.re > 0) {
out$rhat$sigma.sq.psi <- rep(NA, p.occ.re)
}
}
# Put everything into MCMC objects
out$beta.comm.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$beta.comm.samples))))
colnames(out$beta.comm.samples) <- x.names
out$alpha.comm.samples <- mcmc(do.call(rbind,
lapply(out.tmp, function(a) t(a$alpha.comm.samples))))
colnames(out$alpha.comm.samples) <- x.p.names
out$tau.sq.beta.samples <- mcmc(do.call(rbind,
lapply(out.tmp, function(a) t(a$tau.sq.beta.samples))))
colnames(out$tau.sq.beta.samples) <- x.names
out$tau.sq.alpha.samples <- mcmc(do.call(rbind,
lapply(out.tmp, function(a) t(a$tau.sq.alpha.samples))))
colnames(out$tau.sq.alpha.samples) <- x.p.names
if (is.null(sp.names)) {
sp.names <- paste('sp', 1:N, sep = '')
}
coef.names <- paste(rep(x.names, each = N), sp.names, sep = '-')
out$beta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$beta.samples))))
colnames(out$beta.samples) <- coef.names
out$alpha.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$alpha.samples))))
coef.names.det <- paste(rep(x.p.names, each = N), sp.names, sep = '-')
colnames(out$alpha.samples) <- coef.names.det
if (p.det.re > 0) {
out$sigma.sq.p.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$sigma.sq.p.samples))))
colnames(out$sigma.sq.p.samples) <- x.p.re.names
out$alpha.star.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$alpha.star.samples))))
tmp.names <- unlist(p.re.level.names)
alpha.star.names <- paste(rep(x.p.re.names, n.det.re.long), tmp.names, sep = '-')
alpha.star.names <- paste(alpha.star.names, rep(sp.names, each = n.det.re), sep = '-')
colnames(out$alpha.star.samples) <- alpha.star.names
out$p.re.level.names <- p.re.level.names
}
if (p.occ.re > 0) {
out$sigma.sq.psi.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$sigma.sq.psi.samples))))
colnames(out$sigma.sq.psi.samples) <- x.re.names
out$beta.star.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$beta.star.samples))))
tmp.names <- unlist(re.level.names)
beta.star.names <- paste(rep(x.re.names, n.occ.re.long), tmp.names, sep = '-')
beta.star.names <- paste(beta.star.names, rep(sp.names, each = n.occ.re), sep = '-')
colnames(out$beta.star.samples) <- beta.star.names
out$re.level.names <- re.level.names
}
loadings.names <- paste(rep(sp.names, times = n.factors), rep(1:n.factors, each = N), sep = '-')
out$lambda.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$lambda.samples))))
colnames(out$lambda.samples) <- loadings.names
# Return things back in the original order.
out$z.samples <- do.call(abind, lapply(out.tmp, function(a) array(a$z.samples,
dim = c(N, J, n.post.samples))))
out$z.samples <- aperm(out$z.samples, c(3, 1, 2))
out$psi.samples <- do.call(abind, lapply(out.tmp, function(a) array(a$psi.samples,
dim = c(N, J, n.post.samples))))
out$psi.samples <- aperm(out$psi.samples, c(3, 1, 2))
out$like.samples <- do.call(abind, lapply(out.tmp, function(a) array(a$like.samples,
dim = c(N, J, n.post.samples))))
out$like.samples <- aperm(out$like.samples, c(3, 1, 2))
out$w.samples <- do.call(abind, lapply(out.tmp, function(a) array(a$w.samples,
dim = c(q, J, n.post.samples))))
out$w.samples <- aperm(out$w.samples, c(3, 1, 2))
# Calculate effective sample sizes
out$ESS <- list()
out$ESS$beta.comm <- effectiveSize(out$beta.comm.samples)
out$ESS$alpha.comm <- effectiveSize(out$alpha.comm.samples)
out$ESS$tau.sq.beta <- effectiveSize(out$tau.sq.beta.samples)
out$ESS$tau.sq.alpha <- effectiveSize(out$tau.sq.alpha.samples)
out$ESS$beta <- effectiveSize(out$beta.samples)
out$ESS$alpha <- effectiveSize(out$alpha.samples)
out$ESS$lambda <- effectiveSize(out$lambda.samples)
if (p.det.re > 0) {
out$ESS$sigma.sq.p <- effectiveSize(out$sigma.sq.p.samples)
}
if (p.occ.re > 0) {
out$ESS$sigma.sq.psi <- effectiveSize(out$sigma.sq.psi.samples)
}
out$X <- X
out$X.p <- X.p
out$X.p.re <- X.p.re
out$X.re <- X.re
out$y <- y.big
out$call <- cl
out$n.samples <- n.samples
out$x.names <- x.names
out$sp.names <- sp.names
out$x.p.names <- x.p.names
out$q <- q
out$n.post <- n.post.samples
out$n.thin <- n.thin
out$n.burn <- n.burn
out$n.chains <- n.chains
out$coords <- coords
if (p.det.re > 0) {
out$pRE <- TRUE
} else {
out$pRE <- FALSE
}
if (p.occ.re > 0) {
out$psiRE <- TRUE
} else {
out$psiRE <- FALSE
}
}
# K-fold cross-validation -------
if (!missing(k.fold)) {
if (verbose) {
cat("----------------------------------------\n");
cat("\tCross-validation\n");
cat("----------------------------------------\n");
message(paste("Performing ", k.fold, "-fold cross-validation using ", k.fold.threads,
" thread(s).", sep = ''))
}
# Currently implemented without parellization.
set.seed(k.fold.seed)
# Number of sites in each hold out data set.
sites.random <- sample(1:J)
sites.k.fold <- split(sites.random, sites.random %% k.fold)
registerDoParallel(k.fold.threads)
model.deviance <- foreach (i = 1:k.fold, .combine = "+") %dopar% {
curr.set <- sort(sites.random[sites.k.fold[[i]]])
if (binom) {
y.indx <- !(1:J %in% curr.set)
y.fit <- y[rep(y.indx, each = N), drop = FALSE]
y.0 <- y[rep(y.indx, each = N), drop = FALSE]
} else {
y.indx <- !((z.long.indx + 1) %in% curr.set)
y.fit <- c(y.big[, -curr.set, , drop = FALSE])
y.fit <- y.fit[!is.na(y.fit)]
y.0 <- c(y.big[, curr.set, , drop = FALSE])
y.0 <- y.0[!is.na(y.0)]
}
z.inits.fit <- z.inits[, -curr.set]
y.big.fit <- y.big[, -curr.set, , drop = FALSE]
y.big.0 <- y.big[, curr.set, , drop = FALSE]
X.p.fit <- X.p[y.indx, , drop = FALSE]
X.p.0 <- X.p[!y.indx, , drop = FALSE]
X.fit <- X[-curr.set, , drop = FALSE]
X.0 <- X[curr.set, , drop = FALSE]
coords.fit <- coords[-curr.set, , drop = FALSE]
coords.0 <- coords[curr.set, , drop = FALSE]
J.fit <- nrow(X.fit)
J.0 <- nrow(X.0)
K.fit <- K[-curr.set]
K.0 <- K[curr.set]
rep.indx.fit <- rep.indx[-curr.set]
rep.indx.0 <- rep.indx[curr.set]
n.obs.fit <- nrow(X.p.fit)
n.obs.0 <- nrow(X.p.0)
# Random detection effects
X.p.re.fit <- X.p.re[y.indx, , drop = FALSE]
X.p.re.0 <- X.p.re[!y.indx, , drop = FALSE]
n.det.re.fit <- length(unique(c(X.p.re.fit)))
n.det.re.long.fit <- apply(X.p.re.fit, 2, function(a) length(unique(a)))
if (p.det.re > 0) {
alpha.star.indx.fit <- rep(0:(p.det.re - 1), n.det.re.long.fit)
alpha.level.indx.fit <- sort(unique(c(X.p.re.fit)))
alpha.star.inits.fit <- rnorm(n.det.re.fit, 0,
sqrt(sigma.sq.p.inits[alpha.star.indx.fit + 1]))
alpha.star.inits.fit <- rep(alpha.star.inits.fit, N)
p.re.level.names.fit <- list()
for (t in 1:p.det.re) {
tmp.indx <- alpha.level.indx.fit[alpha.star.indx.fit == t - 1]
p.re.level.names.fit[[t]] <- unlist(p.re.level.names)[tmp.indx + 1]
}
} else {
alpha.star.indx.fit <- alpha.star.indx
alpha.level.indx.fit <- alpha.level.indx
alpha.star.inits.fit <- alpha.star.inits
}
# Random occurrence effects
X.re.fit <- X.re[-curr.set, , drop = FALSE]
X.re.0 <- X.re[curr.set, , drop = FALSE]
n.occ.re.fit <- length(unique(c(X.re.fit)))
n.occ.re.long.fit <- apply(X.re.fit, 2, function(a) length(unique(a)))
if (p.occ.re > 0) {
beta.star.indx.fit <- rep(0:(p.occ.re - 1), n.occ.re.long.fit)
beta.level.indx.fit <- sort(unique(c(X.re.fit)))
beta.star.inits.fit <- rnorm(n.occ.re.fit, 0,
sqrt(sigma.sq.psi.inits[beta.star.indx.fit + 1]))
beta.star.inits.fit <- rep(beta.star.inits.fit, N)
re.level.names.fit <- list()
for (t in 1:p.occ.re) {
tmp.indx <- beta.level.indx.fit[beta.star.indx.fit == t - 1]
re.level.names.fit[[t]] <- unlist(re.level.names)[tmp.indx + 1]
}
} else {
beta.star.indx.fit <- beta.star.indx
beta.level.indx.fit <- beta.level.indx
beta.star.inits.fit <- beta.star.inits
re.level.names.fit <- re.level.names
}
if (!binom) {
z.long.indx.fit <- rep(1:J.fit, dim(y.big.fit)[2])
z.long.indx.fit <- z.long.indx.fit[!is.na(c(y.big.fit))]
# Subtract 1 for indices in C
z.long.indx.fit <- z.long.indx.fit - 1
z.0.long.indx <- rep(1:J.0, dim(y.big.0)[2])
z.0.long.indx <- z.0.long.indx[!is.na(c(y.big.0))]
# Don't subtract 1 for z.0.long.indx since its used in R only
} else {
z.long.indx.fit <- 0:(J.fit - 1)
z.0.long.indx <- 1:J.0
}
verbose.fit <- FALSE
n.omp.threads.fit <- 1
storage.mode(y.fit) <- "double"
storage.mode(z.inits.fit) <- "double"
storage.mode(X.p.fit) <- "double"
storage.mode(X.fit) <- "double"
storage.mode(K.fit) <- "double"
consts.fit <- c(N, J.fit, n.obs.fit, p.occ, p.occ.re, n.occ.re.fit,
p.det, p.det.re, n.det.re.fit, q)
storage.mode(consts.fit) <- "integer"
storage.mode(beta.inits) <- "double"
storage.mode(alpha.inits) <- "double"
storage.mode(z.long.indx.fit) <- "integer"
storage.mode(n.samples) <- "integer"
storage.mode(n.omp.threads.fit) <- "integer"
storage.mode(verbose.fit) <- "integer"
storage.mode(n.report) <- "integer"
storage.mode(X.p.re.fit) <- "integer"
storage.mode(n.det.re.long.fit) <- "integer"
storage.mode(alpha.star.inits.fit) <- "double"
storage.mode(alpha.star.indx.fit) <- "integer"
storage.mode(alpha.level.indx.fit) <- "integer"
storage.mode(X.re.fit) <- "integer"
storage.mode(n.occ.re.long.fit) <- "integer"
storage.mode(beta.star.inits.fit) <- "double"
storage.mode(beta.star.indx.fit) <- "integer"
storage.mode(beta.level.indx.fit) <- "integer"
chain.info[1] <- 1
storage.mode(chain.info) <- "integer"
out.fit <- .Call("lfMsPGOcc", y.fit, X.fit, X.p.fit, X.re.fit, X.p.re.fit, consts.fit,
K.fit, n.occ.re.long.fit, n.det.re.long.fit,
beta.inits, alpha.inits, z.inits.fit,
beta.comm.inits, alpha.comm.inits, tau.sq.beta.inits,
tau.sq.alpha.inits, lambda.inits, sigma.sq.psi.inits, sigma.sq.p.inits,
beta.star.inits.fit, alpha.star.inits.fit, z.long.indx.fit,
beta.star.indx.fit, beta.level.indx.fit, alpha.star.indx.fit, alpha.level.indx.fit,
mu.beta.comm, mu.alpha.comm, Sigma.beta.comm, Sigma.alpha.comm,
tau.sq.beta.a, tau.sq.beta.b, tau.sq.alpha.a,
tau.sq.alpha.b, sigma.sq.psi.a, sigma.sq.psi.b,
sigma.sq.p.a, sigma.sq.p.b, n.samples,
n.omp.threads.fit, verbose.fit, n.report,
samples.info, chain.info)
if (is.null(sp.names)) {
sp.names <- paste('sp', 1:N, sep = '')
}
coef.names <- paste(rep(x.names, each = N), sp.names, sep = '-')
out.fit$beta.samples <- mcmc(t(out.fit$beta.samples))
colnames(out.fit$beta.samples) <- coef.names
coef.names.det <- paste(rep(x.p.names, each = N), sp.names, sep = '-')
out.fit$alpha.samples <- mcmc(t(out.fit$alpha.samples))
colnames(out.fit$alpha.samples) <- coef.names.det
loadings.names <- paste(rep(sp.names, times = n.factors),
rep(1:n.factors, each = N), sep = '-')
out.fit$lambda.samples <- mcmc(t(out.fit$lambda.samples))
colnames(out.fit$lambda.samples) <- loadings.names
out.fit$w.samples <- array(out.fit$w.samples, dim = c(q, J, n.post.samples))
out.fit$w.samples <- aperm(out.fit$w.samples, c(3, 1, 2))
out.fit$X <- X.fit
out.fit$y <- y.big.fit
out.fit$X.p <- X.p.fit
out.fit$call <- cl
out.fit$n.samples <- n.samples
out.fit$q <- q
out.fit$coords.fit
out.fit$n.post <- n.post.samples
out.fit$n.thin <- n.thin
out.fit$n.burn <- n.burn
out.fit$n.chains <- 1
if (p.det.re > 0) {
out.fit$pRE <- TRUE
} else {
out.fit$pRE <- FALSE
}
if (p.occ.re > 0) {
out.fit$sigma.sq.psi.samples <- mcmc(t(out.fit$sigma.sq.psi.samples))
colnames(out.fit$sigma.sq.psi.samples) <- x.re.names
out.fit$beta.star.samples <- mcmc(t(out.fit$beta.star.samples))
tmp.names <- unlist(re.level.names.fit)
beta.star.names <- paste(rep(x.re.names, n.occ.re.long.fit), tmp.names, sep = '-')
beta.star.names <- paste(beta.star.names, rep(sp.names, each = n.occ.re.fit),
sep = '-')
colnames(out.fit$beta.star.samples) <- beta.star.names
out.fit$re.level.names <- re.level.names.fit
out.fit$X.re <- X.re.fit
}
if (p.det.re > 0) {
out.fit$sigma.sq.p.samples <- mcmc(t(out.fit$sigma.sq.p.samples))
colnames(out.fit$sigma.sq.p.samples) <- x.p.re.names
out.fit$alpha.star.samples <- mcmc(t(out.fit$alpha.star.samples))
tmp.names <- unlist(p.re.level.names.fit)
alpha.star.names <- paste(rep(x.p.re.names, n.det.re.long.fit), tmp.names, sep = '-')
alpha.star.names <- paste(alpha.star.names, rep(sp.names, each = n.det.re.fit),
sep = '-')
colnames(out.fit$alpha.star.samples) <- alpha.star.names
out.fit$p.re.level.names <- p.re.level.names.fit
out.fit$X.p.re <- X.p.re.fit
}
if (p.occ.re > 0) {
out.fit$psiRE <- TRUE
} else {
out.fit$psiRE <- FALSE
}
class(out.fit) <- "lfMsPGOcc"
# Predict occurrence at new sites.
if (p.occ.re > 0) {
tmp <- unlist(re.level.names)
X.re.0 <- matrix(tmp[c(X.re.0 + 1)], nrow(X.re.0), ncol(X.re.0))
colnames(X.re.0) <- x.re.names
}
if (p.occ.re > 0) {X.0 <- cbind(X.0, X.re.0)}
out.pred <- predict.lfMsPGOcc(out.fit, X.0, coords.0)
# Generate detection values
if (p.det.re > 0) {
tmp <- unlist(p.re.level.names)
X.p.re.0 <- matrix(tmp[c(X.p.re.0 + 1)], nrow(X.p.re.0), ncol(X.p.re.0))
colnames(X.p.re.0) <- x.p.re.names
}
if (p.det.re > 0) {X.p.0 <- cbind(X.p.0, X.p.re.0)}
out.p.pred <- predict.lfMsPGOcc(out.fit, X.p.0, type = 'detection')
if (binom) {
like.samples <- array(NA, c(N, nrow(X.p.0), dim(y.big.0)[3]))
for (r in 1:N) {
for (j in 1:nrow(X.p.0)) {
for (k in rep.indx.0[[j]]) {
like.samples[r, j, k] <- mean(dbinom(y.big.0[r, j, k], 1,
out.p.pred$p.0.samples[, r, j] * out.pred$z.0.samples[, k, z.0.long.indx[j]]))
}
}
}
} else {
like.samples <- matrix(NA, N, nrow(X.p.0))
for (r in 1:N) {
for (j in 1:nrow(X.p.0)) {
like.samples[r, j] <- mean(dbinom(y.0[N * (j - 1) + r], 1,
out.p.pred$p.0.samples[, r, j] *
out.pred$z.0.samples[, r, z.0.long.indx[j]]))
}
}
}
apply(like.samples, 1, function(a) sum(log(a), na.rm = TRUE))
}
model.deviance <- -2 * model.deviance
# Return objects from cross-validation
out$k.fold.deviance <- model.deviance
stopImplicitCluster()
}
class(out) <- "lfMsPGOcc"
out$run.time <- proc.time() - ptm
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.