Nothing
simIntMsOcc <- function(n.data, J.x, J.y, J.obs, n.rep, n.rep.max, N,
beta, alpha, psi.RE = list(),
p.RE = list(), sp = FALSE, svc.cols = 1, cov.model,
sigma.sq, phi, nu, factor.model = FALSE, n.factors,
range.probs, ...) {
# Check for unused arguments ------------------------------------------
formal.args <- names(formals(sys.function(sys.parent())))
elip.args <- names(list(...))
for(i in elip.args){
if(! i %in% formal.args)
warning("'",i, "' is not an argument")
}
# Subroutines -----------------------------------------------------------
rmvn <- function(n, mu=0, V = matrix(1)){
p <- length(mu)
if(any(is.na(match(dim(V),p)))){stop("Dimension problem!")}
D <- chol(V)
t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}
# Check function inputs -------------------------------------------------
# n.data -------------------------------
if (missing(n.data)) {
stop("error: n.data must be specified")
}
if (length(n.data) != 1) {
stop("error: n.data must be a single numeric value.")
}
# J.x -------------------------------
if (missing(J.x)) {
stop("error: J.x must be specified")
}
if (length(J.x) != 1) {
stop("error: J.x must be a single numeric value.")
}
# J.y -------------------------------
if (missing(J.y)) {
stop("error: J.y must be specified")
}
if (length(J.y) != 1) {
stop("error: J.y must be a single numeric value.")
}
J <- J.x * J.y
# J.obs -----------------------------
if (missing(J.obs)) {
stop("error: J.obs must be specified")
}
if (length(J.obs) != n.data) {
stop(paste("error: J.obs must be a vector of length ", n.data, sep = ''))
}
# n.rep -----------------------------
if (missing(n.rep)) {
stop("error: n.rep must be specified.")
}
if (!is.list(n.rep)) {
stop(paste("error: n.rep must be a list of ", n.data, " vectors", sep = ''))
}
if (length(n.rep) != n.data) {
stop(paste("error: n.rep must be a list of ", n.data, " vectors", sep = ''))
}
for (i in 1:n.data) {
if (length(n.rep[[i]]) != J.obs[i]) {
stop(paste("error: n.rep[[", i, "]] must be of length ", J.obs[i], sep = ''))
}
}
if (missing(n.rep.max)) {
n.rep.max <- sapply(n.rep, max, na.rm = TRUE)
}
# N ---------------------------------
if (missing(N)) {
stop("error: N must be specified")
}
if (length(N) != n.data) {
stop(paste("error: N must be a vector of ", n.data,
" values indicating the number of species in each data set", sep = ''))
}
N.max <- max(N)
# beta ------------------------------
if (missing(beta)) {
stop("error: beta must be specified")
}
if (!is.matrix(beta)) {
stop(paste("error: beta must be a numeric matrix with ", N.max, " rows", sep = ''))
}
if (nrow(beta) != N.max) {
stop(paste("error: beta must be a numeric matrix with ", N.max, " rows", sep = ''))
}
# alpha -----------------------------
if (missing(alpha)) {
stop("error: alpha must be specified.")
}
if (!is.list(alpha)) {
stop(paste("error: alpha must be a list with ", n.data, " vectors", sep = ''))
}
# Check spatial stuff ---------------
if (sp & !factor.model) {
N.p.svc <- N.max * length(svc.cols)
# sigma.sq --------------------------
if (missing(sigma.sq)) {
stop("error: sigma.sq must be specified when sp = TRUE")
}
if (length(sigma.sq) != N.p.svc) {
stop(paste("error: sigma.sq must be a vector of length ", N.p.svc, sep = ''))
}
# phi -------------------------------
if(missing(phi)) {
stop("error: phi must be specified when sp = TRUE")
}
if (length(phi) != N.p.svc) {
stop(paste("error: phi must be a vector of length ", N.p.svc, sep = ''))
}
}
if (sp) {
# Covariance model ----------------
if(missing(cov.model)) {
stop("error: cov.model must be specified when sp = TRUE")
}
cov.model.names <- c("exponential", "spherical", "matern", "gaussian")
if(! cov.model %in% cov.model.names){
stop("error: specified cov.model '",cov.model,"' is not a valid option; choose from ",
paste(cov.model.names, collapse=", ", sep="") ,".")
}
if (cov.model == 'matern' & missing(nu)) {
stop("error: nu must be specified when cov.model = 'matern'")
}
}
p.svc <- length(svc.cols)
if (factor.model) {
# n.factors -----------------------
if (missing(n.factors)) {
stop("error: n.factors must be specified when factor.model = TRUE")
}
q.p.svc <- n.factors * length(svc.cols)
if (sp) {
if (!missing(sigma.sq)) {
message("sigma.sq is specified but will be set to 1 for spatial latent factor model")
}
if(missing(phi)) {
stop("error: phi must be specified when sp = TRUE")
}
if (length(phi) != q.p.svc) {
stop(paste("error: phi must be a vector of length ", q.p.svc, sep = ''))
}
}
if (!sp & length(svc.cols) > 1) {
stop("error: length(svc.cols) > 1 when sp = FALSE. Set sp = TRUE to simulate data with spatially-varying coefficients")
}
}
# psi.RE ----------------------------
names(psi.RE) <- tolower(names(psi.RE))
if (!is.list(psi.RE)) {
stop("error: if specified, psi.RE must be a list with tags 'levels' and 'sigma.sq.psi'")
}
if (length(names(psi.RE)) > 0) {
if (!'sigma.sq.psi' %in% names(psi.RE)) {
stop("error: sigma.sq.psi must be a tag in psi.RE with values for the occurrence random effect variances")
}
if (!'levels' %in% names(psi.RE)) {
stop("error: levels must be a tag in psi.RE with the number of random effect levels for each occurrence random intercept.")
}
}
# p.RE ----------------------------
if (!is.list(p.RE)) {
stop(paste("error: if species, p.RE must be a list with ", n.data, " lists", sep = ''))
}
if (length(p.RE) > 0) {
for (q in 1:n.data) {
names(p.RE[[q]]) <- tolower(names(p.RE[[q]]))
if (!is.list(p.RE[[q]])) {
stop("error: if specified, p.RE[[", q, "]] must be a list with tags 'levels' and 'sigma.sq.p'")
}
if (length(names(p.RE[[q]])) > 0) {
if (!'sigma.sq.p' %in% names(p.RE[[q]])) {
stop("error: sigma.sq.p must be a tag in p.RE[[", q, "]] with values for the detection random effect variances")
}
if (!'levels' %in% names(p.RE[[q]])) {
stop("error: levels must be a tag in p.RE[[", q, "]] with the number of random effect levels for each detection random intercept.")
}
}
}
}
# range.probs -----------------------
if (!missing(range.probs)) {
if (length(range.probs) != N.max) {
stop(paste("error: range.probs must be a numeric vector of length ", N.max, sep = ''))
}
} else {
range.probs <- rep(1, N.max)
}
# Subroutines -----------------------------------------------------------
logit <- function(theta, a = 0, b = 1){log((theta-a)/(b-theta))}
logit.inv <- function(z, a = 0, b = 1){b-(b-a)/(1+exp(z))}
# Form occupancy covariates (if any) ------------------------------------
J <- J.x * J.y
p.occ <- ncol(beta)
X <- matrix(1, nrow = J, ncol = p.occ)
if (p.occ > 1) {
for (i in 2:p.occ) {
X[, i] <- rnorm(J)
} # i
}
# Get site ids for each of the data sets --------------------------------
# Data sources can be obtained at multiple different sites.
sites <- list()
for (i in 1:n.data) {
sites[[i]] <- sort(sample(1:J, J.obs[i], replace = FALSE))
}
# Form detection covariates (if any) ------------------------------------
X.p <- list()
rep.indx <- list()
for (i in 1:n.data) {
rep.indx[[i]] <- list()
n.alpha.curr <- ncol(alpha[[i]])
K.curr <- n.rep[[i]]
J.curr <- J.obs[[i]]
for (j in 1:J.curr) {
rep.indx[[i]][[j]] <- sample(1:n.rep.max[i], K.curr[j], replace = FALSE)
}
X.p[[i]] <- array(NA, dim = c(J.curr, n.rep.max[i], n.alpha.curr))
X.p[[i]][, , 1] <- 1
if (n.alpha.curr > 1) {
for (q in 2:n.alpha.curr) {
for (j in 1:J.curr) {
X.p[[i]][j, rep.indx[[i]][[j]], q] <- rnorm(K.curr[j])
} # j
} # q
}
} # i
# Simulate latent (spatial) random effect for each species --------------
# Matrix of spatial locations
s.x <- seq(0, 1, length.out = J.x)
s.y <- seq(0, 1, length.out = J.y)
coords <- as.matrix(expand.grid(s.x, s.y))
w.star <- vector(mode = "list", length = p.svc)
w <- vector(mode = "list", length = p.svc)
lambda <- vector(mode = "list", length = p.svc)
# Form spatial process for each spatially-varying covariate
for (i in 1:p.svc) {
w.star[[i]] <- matrix(0, nrow = N.max, ncol = J)
w[[i]] <- rep(0, J)
if (factor.model) {
lambda[[i]] <- matrix(rnorm(N.max * n.factors, 0, 1), N.max, n.factors)
# Set diagonals to 1
diag(lambda[[i]]) <- 1
# Set upper tri to 0
lambda[[i]][upper.tri(lambda[[i]])] <- 0
w[[i]] <- matrix(NA, n.factors, J)
if (sp) { # sfIntMsPGOcc/svcIntMsPGOcc
if (cov.model == 'matern') {
# Assume all spatial parameters ordered by svc first, then factor
theta <- cbind(phi[((i - 1) * n.factors + 1):(i * n.factors)],
nu[((i - 1) * n.factors + 1):(i * n.factors)])
} else {
theta <- as.matrix(phi[((i - 1) * n.factors + 1):(i * n.factors)])
}
for (ll in 1:n.factors) {
Sigma <- mkSpCov(coords, as.matrix(1), as.matrix(0),
theta[ll, ], cov.model)
w[[i]][ll, ] <- rmvn(1, rep(0, J), Sigma)
}
} else { # lfIntMsPGOcc
for (ll in 1:n.factors) {
w[[i]][ll, ] <- rnorm(J)
} # ll
}
for (j in 1:J) {
w.star[[i]][, j] <- lambda[[i]] %*% w[[i]][, j]
}
} else {
if (sp) { # spIntMsPGOcc
lambda <- NA
if (cov.model == 'matern') {
theta <- cbind(phi[((i - 1) * N.max + 1):(i * N.max)],
nu[((i - 1) * N.max + 1):(i * N.max)])
} else {
theta <- as.matrix(phi[((i - 1) * N.max + 1):(i * N.max)])
}
# Spatial random effects for each species
for (ll in 1:N.max) {
Sigma <- mkSpCov(coords, as.matrix(sigma.sq[(i - 1) * N.max + ll]), as.matrix(0),
theta[ll, ], cov.model)
w.star[[i]][ll, ] <- rmvn(1, rep(0, J), Sigma)
}
}
# For naming consistency
w <- w.star
lambda <- NA
}
} # i (spatially-varying coefficient)
# Design matrix for spatially-varying coefficients
X.w <- X[, svc.cols, drop = FALSE]
# Random effects --------------------------------------------------------
# Occupancy -------------------------
if (length(psi.RE) > 0) {
p.occ.re <- length(psi.RE$levels)
sigma.sq.psi <- rep(NA, p.occ.re)
n.occ.re.long <- psi.RE$levels
n.occ.re <- sum(n.occ.re.long)
beta.star.indx <- rep(1:p.occ.re, n.occ.re.long)
beta.star <- matrix(0, N.max, n.occ.re)
X.re <- matrix(NA, J, p.occ.re)
for (l in 1:p.occ.re) {
X.re[, l] <- sample(1:psi.RE$levels[l], J, replace = TRUE)
for (i in 1:N.max) {
beta.star[i, which(beta.star.indx == l)] <- rnorm(psi.RE$levels[l], 0,
sqrt(psi.RE$sigma.sq.psi[l]))
}
}
if (p.occ.re > 1) {
for (j in 2:p.occ.re) {
X.re[, j] <- X.re[, j] + max(X.re[, j - 1], na.rm = TRUE)
}
}
beta.star.sites <- matrix(NA, N.max, J)
for (i in 1:N.max) {
beta.star.sites[i, ] <- apply(X.re, 1, function(a) sum(beta.star[i, a]))
}
} else {
X.re <- NA
beta.star <- NA
}
# Detection -------------------------
if (length(p.RE) > 0) {
p.det.re <- list()
n.det.re.long <- list()
n.det.re <- list()
alpha.star.indx <- list()
alpha.star <- list()
alpha.star.sites <- list()
X.p.re <- list()
for (q in 1:n.data) {
if (length(p.RE[[q]]) > 0) {
p.det.re[[q]] <- length(p.RE[[q]]$levels)
n.det.re.long[[q]] <- p.RE[[q]]$levels
n.det.re[[q]] <- sum(n.det.re.long[[q]])
alpha.star.indx[[q]] <- rep(1:p.det.re[[q]], n.det.re.long[[q]])
alpha.star[[q]] <- matrix(0, N[[q]], n.det.re[[q]])
X.p.re[[q]] <- array(NA, dim = c(J.obs[[q]], max(n.rep[[q]]), p.det.re[[q]]))
for (l in 1:p.det.re[[q]]) {
X.p.re[[q]][, , l] <- matrix(sample(1:p.RE[[q]]$levels[l],
J.obs[[q]] * max(n.rep[[q]]), replace = TRUE),
J.obs[[q]], max(n.rep[[q]]))
for (i in 1:N[[q]]) {
alpha.star[[q]][i, which(alpha.star.indx[[q]] == l)] <- rnorm(p.RE[[q]]$levels[l],
0,
sqrt(p.RE[[q]]$sigma.sq.p[l]))
}
}
for (j in 1:J.obs[[q]]) {
X.p.re[[q]][j, -rep.indx[[q]][[j]], ] <- NA
}
if (p.det.re[[q]] > 1) {
for (j in 2:p.det.re[[q]]) {
X.p.re[[q]][, , j] <- X.p.re[[q]][, , j] + max(X.p.re[[q]][, , j - 1], na.rm = TRUE)
}
}
alpha.star.sites[[q]] <- array(NA, c(N[[q]], J.obs[q], n.rep.max[[q]]))
for (i in 1:N[[q]]) {
alpha.star.sites[[q]][i, , ] <- apply(X.p.re[[q]], c(1, 2), function(a) sum(alpha.star[[q]][i, a]))
}
} else {
X.p.re[[q]] <- NA
alpha.star[[q]] <- NA
alpha.star.sites[[q]] <- NA
}
}
} else {
X.p.re <- NA
alpha.star <- NA
}
# Get species ids for each of the data sets -----------------------------
# Data sources can sample different amounts of all the species in the community.
species <- list()
for (i in 1:n.data) {
species[[i]] <- sort(sample(1:N.max, N[i], replace = FALSE))
}
# Latent Occupancy Process ----------------------------------------------
psi <- matrix(0, nrow = N.max, ncol = J)
z <- matrix(0, nrow = N.max, ncol = J)
range.ind <- matrix(NA, N.max, J)
for (i in 1:N.max) {
range.ind[i, ] <- rbinom(J, 1, range.probs[i])
w.star.curr.mat <- sapply(w.star, function(a) a[i, ])
for (j in 1:J) {
if (range.ind[i, j]) {
if (sp | factor.model) {
if (length(psi.RE) > 0) {
psi[i, j] <- logit.inv(X[j, ] %*% as.matrix(beta[i, ]) +
X.w[j, ] %*% w.star.curr.mat[j, ] +
beta.star.sites[i, j])
} else {
psi[i, j] <- logit.inv(X[j, ] %*% as.matrix(beta[i, ]) +
X.w[j, ] %*% w.star.curr.mat[j, ])
}
} else {
if (length(psi.RE) > 0) {
psi[i, j] <- logit.inv(X[j, ] %*% as.matrix(beta[i, ]) + beta.star.sites[i, j])
} else {
psi[i, j] <- logit.inv(X[j, ] %*% as.matrix(beta[i, ]))
}
}
z[i, j] <- rbinom(1, 1, psi[i, j])
} else {
psi[i, j] <- 0
z[i, j] <- 0
}
}
z[i, ] <- rbinom(J, 1, psi[i, ])
}
# Data Formation --------------------------------------------------------
p <- list()
y <- list()
for (l in 1:n.data) {
p[[l]] <- array(NA, dim = c(N[l], J.obs[l], n.rep.max[l]))
y[[l]] <- array(NA, dim = c(N[l], J.obs[l], n.rep.max[l]))
for (i in 1:N[l]) {
for (j in 1:J.obs[l]) {
if (length(p.RE) > 0) {
p[[l]][i, j, rep.indx[[l]][[j]]] <- logit.inv(X.p[[l]][j, rep.indx[[l]][[j]], ] %*% as.matrix(alpha[[l]][i, ]) + alpha.star.sites[[l]][i, j, rep.indx[[l]][[j]]])
} else {
p[[l]][i, j, rep.indx[[l]][[j]]] <- logit.inv(X.p[[l]][j, rep.indx[[l]][[j]], ] %*% as.matrix(alpha[[l]][i, ]))
}
y[[l]][i, j, rep.indx[[l]][[j]]] <- rbinom(n.rep[[l]][j], 1, p[[l]][i, j, rep.indx[[l]][[j]]] * z[species[[l]][i], sites[[l]][j]])
} # j
} # i
}
# Split up into observed and predicted ----------------------------------
sites.obs <- sort(unique(unlist(sites)))
sites.pred <- (1:J)[!(1:J %in% sites.obs)]
X.obs <- X[sites.obs, , drop = FALSE]
X.pred <- X[sites.pred, , drop = FALSE]
if (length(psi.RE) > 0) {
X.re.obs <- X.re[sites.obs, , drop = FALSE]
X.re.pred <- X.re[sites.pred, , drop = FALSE]
} else {
X.re.obs <- NA
X.re.pred <- NA
}
z.obs <- z[, sites.obs]
z.pred <- z[, sites.pred]
coords.obs <- coords[sites.obs,, drop = FALSE]
coords.pred <- coords[sites.pred,, drop = FALSE]
w.obs <- list()
w.pred <- list()
if (sp) {
for (r in 1:p.svc) {
w.obs[[r]] <- w[[r]][, sites.obs, drop = FALSE]
w.pred[[r]] <- w[[r]][, sites.pred, drop = FALSE]
}
} else {
w.obs <- NA
w.pred <- NA
}
psi.obs <- psi[, sites.obs, drop = FALSE]
psi.pred <- psi[, sites.pred, drop = FALSE]
sites.vec <- unlist(sites)
# Need to get index of each site value in only the sites.obs
sites.new <- rep(0, length(sites.vec))
for (i in 1:length(sites.vec)) {
sites.new[i] <- which(sites.obs == sites.vec[i])
}
sites.return <- list()
indx <- 1
for (i in 1:n.data) {
sites.return[[i]] <- sites.new[indx:(indx + J.obs[i] - 1)]
indx <- indx + J.obs[i]
}
return(
list(X.obs = X.obs, X.pred = X.pred, X.p = X.p,
coords.obs = coords.obs, coords.pred = coords.pred,
w.obs = w.obs, w.pred = w.pred,
psi.obs = psi.obs, psi.pred = psi.pred, z.obs = z.obs,
z.pred = z.pred, p = p, y = y, sites = sites.return,
X.p.re = X.p.re, X.re.obs = X.re.obs,
X.re.pred = X.re.pred, alpha.star = alpha.star,
beta.star = beta.star, lambda = lambda, species = species
)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.