Nothing
simTMsOcc <- function(J.x, J.y, n.time, n.rep, N, beta, alpha, sp.only = 0,
trend = TRUE, psi.RE = list(),
p.RE = list(), sp = FALSE, svc.cols = 1, cov.model,
sigma.sq, phi, nu, ar1 = FALSE, rho, sigma.sq.t,
factor.model = FALSE, n.factors, range.probs, grid, ...) {
# Check for unused arguments ------------------------------------------
formal.args <- names(formals(sys.function(sys.parent())))
elip.args <- names(list(...))
for(i in elip.args){
if(! i %in% formal.args)
warning("'",i, "' is not an argument")
}
# Check function inputs -------------------------------------------------
# J.x -------------------------------
if (missing(J.x)) {
stop("error: J.x must be specified")
}
if (length(J.x) != 1) {
stop("error: J.x must be a single numeric value.")
}
# J.y -------------------------------
if (missing(J.y)) {
stop("error: J.y must be specified")
}
if (length(J.y) != 1) {
stop("error: J.y must be a single numeric value.")
}
J <- J.x * J.y
# n.time ---------------------------
if (missing(n.time)) {
stop("error: n.time must be specified.")
}
# n.rep -----------------------------
if (missing(n.rep)) {
stop("error: n.rep must be specified.")
}
if (!is.matrix(n.rep)) {
stop(paste("error: n.rep must be a matrix with ", J, " rows and ", max(n.time), " columns", sep = ''))
}
if (nrow(n.rep) != J | ncol(n.rep) != max(n.time)) {
stop(paste("error: n.rep must be a matrix with ", J, " rows and ", max(n.time), " columns", sep = ''))
}
# N ---------------------------------
if (missing(N)) {
stop("error: N must be specified")
}
if (length(N) != 1) {
stop("error: N must be a single numeric value.")
}
# beta ------------------------------
if (missing(beta)) {
stop("error: beta must be specified")
}
if (!is.matrix(beta)) {
stop(paste("error: beta must be a numeric matrix with ", N, " rows", sep = ''))
}
if (nrow(beta) != N) {
stop(paste("error: beta must be a numeric matrix with ", N, " rows", sep = ''))
}
# alpha -----------------------------
if (missing(alpha)) {
stop("error: alpha must be specified.")
}
if (!is.matrix(alpha)) {
stop(paste("error: alpha must be a numeric matrix with ", N, " rows", sep = ''))
}
if (nrow(alpha) != N) {
stop(paste("error: alpha must be a numeric matrix with ", N, " rows", sep = ''))
}
# Check spatial stuff ---------------
if (sp & !factor.model) {
N.p.svc <- N * length(svc.cols)
# sigma.sq --------------------------
if (missing(sigma.sq)) {
stop("error: sigma.sq must be specified when sp = TRUE")
}
if (length(sigma.sq) != N.p.svc) {
stop(paste("error: sigma.sq must be a vector of length ", N.p.svc, sep = ''))
}
# phi -------------------------------
if(missing(phi)) {
stop("error: phi must be specified when sp = TRUE")
}
if (length(phi) != N.p.svc) {
stop(paste("error: phi must be a vector of length ", N.p.svc, sep = ''))
}
}
if (sp) {
# Covariance model ----------------
if(missing(cov.model)) {
stop("error: cov.model must be specified when sp = TRUE")
}
cov.model.names <- c("exponential", "spherical", "matern", "gaussian")
if(! cov.model %in% cov.model.names){
stop("error: specified cov.model '",cov.model,"' is not a valid option; choose from ",
paste(cov.model.names, collapse=", ", sep="") ,".")
}
if (cov.model == 'matern' & missing(nu)) {
stop("error: nu must be specified when cov.model = 'matern'")
}
}
if (factor.model) {
# n.factors -----------------------
if (missing(n.factors)) {
stop("error: n.factors must be specified when factor.model = TRUE")
}
q.p.svc <- n.factors * length(svc.cols)
if (sp) {
if (!missing(sigma.sq)) {
message("sigma.sq is specified but will be set to 1 for spatial latent factor model")
}
if(missing(phi)) {
stop("error: phi must be specified when sp = TRUE")
}
if (length(phi) != q.p.svc) {
stop(paste("error: phi must be a vector of length ", q.p.svc, sep = ''))
}
}
if (!sp & length(svc.cols) > 1) {
stop("error: svc.cols > 1 when sp = FALSE. Set sp = TRUE to simulate data with spatially-varying coefficients")
}
}
# psi.RE ----------------------------
names(psi.RE) <- tolower(names(psi.RE))
if (!is.list(psi.RE)) {
stop("error: if specified, psi.RE must be a list with tags 'levels' and 'sigma.sq.psi'")
}
if (length(names(psi.RE)) > 0) {
if (!'sigma.sq.psi' %in% names(psi.RE)) {
stop("error: sigma.sq.psi must be a tag in psi.RE with values for the occurrence random effect variances")
}
if (!'levels' %in% names(psi.RE)) {
stop("error: levels must be a tag in psi.RE with the number of random effect levels for each occurrence random intercept.")
}
}
# p.RE ----------------------------
names(p.RE) <- tolower(names(p.RE))
if (!is.list(p.RE)) {
stop("error: if specified, p.RE must be a list with tags 'levels' and 'sigma.sq.p'")
}
if (length(names(p.RE)) > 0) {
if (!'sigma.sq.p' %in% names(p.RE)) {
stop("error: sigma.sq.p must be a tag in p.RE with values for the detection random effect variances")
}
if (!'levels' %in% names(p.RE)) {
stop("error: levels must be a tag in p.RE with the number of random effect levels for each detection random intercept.")
}
}
# range.probs -----------------------
if (!missing(range.probs)) {
if (length(range.probs) != N) {
stop(paste("error: range.probs must be a numeric vector of length ", N, sep = ''))
}
} else {
range.probs <- rep(1, N)
}
# AR1 -------------------------------
if (ar1) {
if (missing(rho)) {
stop("error: rho must be specified when ar1 = TRUE")
}
if (length(rho) != N) {
stop(paste0("rho must be a vector of ", N, " values"))
}
if (missing(sigma.sq.t)) {
stop("error: sigma.sq.t must be specified when ar1 = TRUE")
}
if (length(sigma.sq.t) != N) {
stop(paste0("sigma.sq.t must be a vector of ", N, " values"))
}
}
# Grid for spatial REs that doesn't match the sites ---------------------
if (!missing(grid) & sp) {
if (!is.atomic(grid)) {
stop("grid must be a vector")
}
if (length(grid) != J) {
stop(paste0("grid must be of length ", J))
}
} else {
grid <- 1:J
}
# Subroutines -----------------------------------------------------------
# MVN
rmvn <- function(n, mu=0, V = matrix(1)) {
p <- length(mu)
if(any(is.na(match(dim(V),p))))
stop("Dimension problem!")
D <- chol(V)
t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}
logit <- function(theta, a = 0, b = 1){log((theta-a)/(b-theta))}
logit.inv <- function(z, a = 0, b = 1){b-(b-a)/(1+exp(z))}
# Matrix of spatial locations
s.x <- seq(0, 1, length.out = J.x)
s.y <- seq(0, 1, length.out = J.y)
coords.full <- as.matrix(expand.grid(s.x, s.y))
coords <- cbind(tapply(coords.full[, 1], grid, mean),
tapply(coords.full[, 2], grid, mean))
# Form occupancy covariates (if any) ------------------------------------
p.occ <- ncol(beta)
n.time.max <- max(n.time, na.rm = TRUE)
X <- array(NA, dim = c(J, n.time.max, p.occ))
X[, , 1] <- 1
if (p.occ > 1) {
if (trend) { # If simulating data with a trend
# By default the second simulated covariate is a standardized trend
X[, , 2] <- scale(c(matrix(rep(1:n.time.max, each = J), nrow = J, ncol = n.time.max)), center = FALSE)
if (p.occ > 2) {
for (i in 3:p.occ) {
if (i %in% sp.only) {
X[, , i] <- rep(rnorm(J), n.time.max)
} else {
# X[, , i] <- runif(J * n.time.max, 0, 2)
X[, , i] <- rnorm(J * n.time.max)
}
}
}
} else { # If not simulating data with a trend
if (p.occ > 1) {
for (i in 2:p.occ) {
if (i %in% sp.only) {
# X[, , i] <- rep(runif(J, 0, 2), n.time.max)
X[, , i] <- rep(rnorm(J,), n.time.max)
} else {
# X[, , i] <- runif(J * n.time.max, 0, 2)
X[, , i] <- rnorm(J * n.time.max)
}
}
}
}
}
# Form detection covariate (if any) -------------------------------------
p.det <- ncol(alpha)
n.rep.max <- max(n.rep, na.rm = TRUE)
X.p <- array(NA, dim = c(J, n.time.max, n.rep.max, p.det))
X.p[, , , 1] <- 1
if (p.det > 1) {
for (j in 1:J) {
for (t in 1:n.time[j]) {
for (k in 1:n.rep[j, t]) {
X.p[j, t, k, 2:p.det] <- rnorm(p.det - 1)
} # k
} # t
} # j
}
# Simulate latent (spatial) random effect for each species --------------
p.svc <- length(svc.cols)
w.star <- vector(mode = "list", length = p.svc)
w <- vector(mode = "list", length = p.svc)
lambda <- vector(mode = "list", length = p.svc)
J.w <- nrow(coords)
# Form spatial process for each spatially-varying covariate
for (i in 1:p.svc) {
w.star[[i]] <- matrix(0, nrow = N, ncol = J.w)
if (factor.model) {
lambda[[i]] <- matrix(rnorm(N * n.factors, 0, 1), N, n.factors)
# Set diagonals to 1
diag(lambda[[i]]) <- 1
# Set upper tri to 0
lambda[[i]][upper.tri(lambda[[i]])] <- 0
w[[i]] <- matrix(NA, n.factors, J.w)
if (sp) { # sfMsPGOcc
if (cov.model == 'matern') {
# Assume all spatial parameters ordered by svc first, then factor
theta <- cbind(phi[((i - 1) * n.factors + 1):(i * n.factors)],
nu[((i - 1) * n.factors + 1):(i * n.factors)])
} else {
theta <- as.matrix(phi[((i - 1) * n.factors + 1):(i * n.factors)])
}
for (ll in 1:n.factors) {
Sigma <- mkSpCov(coords, as.matrix(1), as.matrix(0),
theta[ll, ], cov.model)
w[[i]][ll, ] <- rmvn(1, rep(0, J.w), Sigma)
}
} else { # lsMsPGOcc
for (ll in 1:n.factors) {
w[[i]][ll, ] <- rnorm(J.w)
} # ll
}
for (j in 1:J.w) {
w.star[[i]][, j] <- lambda[[i]] %*% w[[i]][, j]
}
} else {
if (sp) { # spMsPGOcc
lambda <- NA
if (cov.model == 'matern') {
theta <- cbind(phi[((i - 1) * N + 1):(i * N)],
nu[((i - 1) * N + 1):(i * N)])
} else {
theta <- as.matrix(phi[((i - 1) * N + 1):(i * N)])
}
# Spatial random effects for each species
for (ll in 1:N) {
Sigma <- mkSpCov(coords, as.matrix(sigma.sq[(i - 1) * N + ll]), as.matrix(0),
theta[ll, ], cov.model)
w.star[[i]][ll, ] <- rmvn(1, rep(0, J.w), Sigma)
}
}
# For naming consistency
w <- w.star
lambda <- NA
}
} # i (spatially-varying coefficient)
# Design matrix for spatially-varying coefficients
if (sp) {
X.w <- X[, , svc.cols, drop = FALSE]
} else{
X.w <- NA
}
# Random effects --------------------------------------------------------
if (length(psi.RE) > 0) {
p.occ.re <- length(psi.RE$levels)
sigma.sq.psi <- rep(NA, p.occ.re)
n.occ.re.long <- psi.RE$levels
n.occ.re <- sum(n.occ.re.long)
beta.star.indx <- rep(1:p.occ.re, n.occ.re.long)
beta.star <- matrix(0, N, n.occ.re)
X.re <- array(NA, dim = c(J, n.time.max, p.occ.re))
for (l in 1:p.occ.re) {
X.re[, , l] <- sample(1:psi.RE$levels[l], J * n.time.max, replace = TRUE)
for (i in 1:N) {
beta.star[i, which(beta.star.indx == l)] <- rnorm(psi.RE$levels[l], 0,
sqrt(psi.RE$sigma.sq.psi[l]))
}
}
if (p.occ.re > 1) {
for (j in 2:p.occ.re) {
X.re[, , j] <- X.re[, , j] + max(X.re[, , j - 1], na.rm = TRUE)
}
}
beta.star.sites <- array(NA, dim = c(N, J, n.time.max))
for (i in 1:N) {
beta.star.sites[i, , ] <- apply(X.re, c(1, 2), function(a) sum(beta.star[i, a]))
}
} else {
X.re <- NA
beta.star <- NA
}
if (length(p.RE) > 0) {
p.det.re <- length(p.RE$levels)
sigma.sq.p <- rep(NA, p.det.re)
n.det.re.long <- p.RE$levels
n.det.re <- sum(n.det.re.long)
alpha.star.indx <- rep(1:p.det.re, n.det.re.long)
alpha.star <- matrix(0, N, n.det.re)
X.p.re <- array(NA, dim = c(J, n.time.max, max(n.rep, na.rm = TRUE), p.det.re))
for (l in 1:p.det.re) {
X.p.re[, , , l] <- sample(1:p.RE$levels[l], J * n.time.max * max(n.rep, na.rm = TRUE),
replace = TRUE)
for (i in 1:N) {
alpha.star[i, which(alpha.star.indx == l)] <- rnorm(p.RE$levels[l], 0, sqrt(p.RE$sigma.sq.p[l]))
}
}
# for (j in 1:J) {
# X.p.re[j, t, -(1:n.rep[j]), ] <- NA
# }
if (p.det.re > 1) {
for (j in 2:p.det.re) {
X.p.re[, , , j] <- X.p.re[, , , j] + max(X.p.re[, , , j - 1], na.rm = TRUE)
}
}
alpha.star.sites <- array(NA, c(N, J, n.time.max, max(n.rep, na.rm = TRUE)))
for (i in 1:N) {
alpha.star.sites[i, , , ] <- apply(X.p.re, c(1, 2, 3), function(a) sum(alpha.star[i, a]))
}
} else {
X.p.re <- NA
alpha.star <- NA
}
# Simulate temporal (AR1) random effect ---------------------------------
eta <- matrix(0, N, n.time.max)
if (ar1) {
exponent <- abs(matrix(1:n.time.max - 1, nrow = n.time.max,
ncol = n.time.max, byrow = TRUE) - (1:n.time.max - 1))
for (i in 1:N) {
Sigma.eta <- sigma.sq.t[i] * rho[i]^exponent
eta[i, ] <- rmvn(1, rep(0, n.time.max), Sigma.eta)
}
}
# Latent Occupancy Process ----------------------------------------------
psi <- array(NA, dim = c(N, J, max(n.time)))
z <- array(NA, dim = c(N, J, max(n.time)))
range.ind <- matrix(NA, N, J)
for (i in 1:N) {
if (sp | factor.model) {
w.star.curr <- sapply(w.star, function(a) a[i, ])
for (j in 1:J) {
range.ind[i, j] <- rbinom(1, 1, range.probs[i])
if (range.ind[i, j] == 1) {
for (t in 1:n.time.max) {
if (length(psi.RE) > 0) {
psi[i, j, t] <- logit.inv(X[j, t, ] %*% as.matrix(beta[i, ]) +
X.w[j, t, ] %*% w.star.curr[grid[j], ] +
beta.star.sites[i, j, t] + eta[i, t])
} else {
psi[i, j, t] <- logit.inv(X[j, t, ] %*% as.matrix(beta[i, ]) +
X.w[j, t, ] %*% w.star.curr[grid[j], ] + eta[i, t])
}
}
} else {
for (t in 1:n.time.max) {
psi[i, j, t] <- 0
}
}
}
} else {
for (j in 1:J) {
range.ind[i, j] <- rbinom(1, 1, range.probs[i])
if (range.ind[i, j] == 1) {
for (t in 1:n.time.max) {
if (length(psi.RE) > 0) {
psi[i, j, t] <- logit.inv(X[j, t, ] %*% as.matrix(beta[i, ]) +
beta.star.sites[i, j, t] + eta[i, t])
} else {
psi[i, j, t] <- logit.inv(X[j, t, ] %*% as.matrix(beta[i, ]) + eta[i, t])
}
}
} else {
for (t in 1:n.time.max) {
psi[i, j, t] <- 0
}
}
}
}
}
for (i in 1:N) {
for (t in 1:n.time.max) {
z[i, , t] <- rbinom(J, 1, psi[i, , t])
} # t
} # i
# Data Formation --------------------------------------------------------
p <- array(NA, dim = c(N, J, n.time.max, max(n.rep, na.rm = TRUE)))
y <- array(NA, dim = c(N, J, n.time.max, max(n.rep, na.rm = TRUE)))
for (i in 1:N) {
for (j in 1:J) {
if (range.ind[i, j] == 1) {
for (t in 1:n.time[j]) {
if (length(p.RE) > 0) {
p[i, j, t, 1:n.rep[j, t]] <- logit.inv(X.p[j, t, 1:n.rep[j, t], ] %*% as.matrix(alpha[i, ]) + alpha.star.sites[i, j, t, 1:n.rep[j, t]])
} else {
p[i, j, t, 1:n.rep[j, t]] <- logit.inv(X.p[j, t, 1:n.rep[j, t], ] %*% as.matrix(alpha[i, ]))
}
y[i, j, t, 1:n.rep[j, t]] <- rbinom(n.rep[j, t], 1, p[i, j, t, 1:n.rep[j, t]] * z[i, j, t])
} # t
} else {
for (t in 1:n.time[j]) {
p[i, j, t, 1:n.rep[j, t]] <- 0
y[i, j, t, 1:n.rep[j, t]] <- 0
}
}
} # j
} # i
return(
list(X = X, X.p = X.p, coords = coords, coords.full = coords.full,
w = w, psi = psi, z = z, p = p, y = y, X.p.re = X.p.re,
X.re = X.re, alpha.star = alpha.star, beta.star = beta.star,
lambda = lambda, X.w = X.w, range.ind = range.ind, eta = eta)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.