Nothing
svcPGBinom <- function(formula, data, inits, priors, tuning,
svc.cols = 1, cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.batch,
batch.length, accept.rate = 0.43,
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length),
n.thin = 1, n.chains = 1,
k.fold, k.fold.threads = 1, k.fold.seed = 100,
k.fold.only = FALSE, ...){
ptm <- proc.time()
# Make it look nice
if (verbose) {
cat("----------------------------------------\n");
cat("\tPreparing to run the model\n");
cat("----------------------------------------\n");
}
# Functions ---------------------------------------------------------------
logit <- function(theta, a = 0, b = 1) {log((theta-a)/(b-theta))}
logit.inv <- function(z, a = 0, b = 1) {b-(b-a)/(1+exp(z))}
rigamma <- function(n, a, b){
1/rgamma(n = n, shape = a, rate = b)
}
# Check for unused arguments ------------------------------------------
formal.args <- names(formals(sys.function(sys.parent())))
elip.args <- names(list(...))
for(i in elip.args){
if(! i %in% formal.args)
warning("'",i, "' is not an argument")
}
# Call ----------------------------------------------------------------
# Returns a call in which all of the specified arguments are
# specified by their full names.
cl <- match.call()
# Some initial checks -------------------------------------------------
if (missing(data)) {
stop("error: data must be specified")
}
if (!is.list(data)) {
stop("error: data must be a list")
}
names(data) <- tolower(names(data))
if (missing(formula)) {
stop("error: formula must be specified")
}
if (!'y' %in% names(data)) {
stop("error: detection-nondetection data y must be specified in data")
}
y <- c(data$y)
if (!'weights' %in% names(data)) {
stop("error: weights (binomial denominator) must be specified in data")
}
weights <- data$weights
if (!'covs' %in% names(data)) {
if (formula == ~ 1) {
if (verbose) {
message("covariates (covs) not specified in data.\nAssuming intercept only model.\n")
}
data$covs <- matrix(1, length(y), 1)
} else {
stop("error: covs must be specified in data for an occupancy model with covariates")
}
}
if (!is.matrix(data$covs) & !is.data.frame(data$covs)) {
stop("error: covs must be a matrix or data frame")
}
if (!'coords' %in% names(data)) {
stop("error: coords must be specified in data for a spatial occupancy model.")
}
if (!is.matrix(data$coords) & !is.data.frame(data$coords)) {
stop("error: coords must be a matrix or data frame")
}
coords <- as.matrix(data$coords)
# Check if all spatial coordinates are unique.
unique.coords <- unique(data$coords)
if (nrow(unique.coords) < nrow(data$coords)) {
stop("coordinates provided in coords are not all unique. spOccupancy requires each site to have its own unique pair of spatial coordinates. This may be the result of an error in preparing the data list, or you will need to change what you consider a 'site' in order to meet this requirement.")
}
if (!missing(k.fold)) {
if (!is.numeric(k.fold) | length(k.fold) != 1 | k.fold < 2) {
stop("error: k.fold must be a single integer value >= 2")
}
}
# Neighbors and Ordering ----------------------------------------------
if (NNGP) {
u.search.type <- 2
## Order by x column. Could potentially allow this to be user defined.
ord <- order(coords[,1])
# Reorder everything to align with NN ordering
y <- y[ord, drop = FALSE]
weights <- weights[ord, drop = FALSE]
coords <- coords[ord, , drop = FALSE]
# Occupancy covariates
data$covs <- data$covs[ord, , drop = FALSE]
}
data$covs <- as.data.frame(data$covs)
# Checking missing values ---------------------------------------------
# y -------------------------------
if (sum(is.na(y) > 0)) {
stop("error: some sites in y have missing values. Remove these sites from all objects in the 'data' argument, then use 'predict' to obtain predictions at these locations if desired.")
}
# covs ------------------------
if (sum(is.na(data$covs)) != 0) {
stop("error: missing values in covs. Please remove these sites from all objects in data or somehow replace the NA values with non-missing values (e.g., mean imputation).")
}
# Check whether random effects are sent in as numeric, and
# return error if they are.
# Occurrence ----------------------
if (!is.null(findbars(formula))) {
occ.re.names <- sapply(findbars(formula), all.vars)
for (i in 1:length(occ.re.names)) {
if (is(data$covs[, occ.re.names[i]], 'factor')) {
stop(paste("error: random effect variable ", occ.re.names[i], " specified as a factor. Random effect variables must be specified as numeric.", sep = ''))
}
if (is(data$covs[, occ.re.names[i]], 'character')) {
stop(paste("error: random effect variable ", occ.re.names[i], " specified as character. Random effect variables must be specified as numeric.", sep = ''))
}
}
}
# Formula -------------------------------------------------------------
# Occupancy -----------------------
if (is(formula, 'formula')) {
tmp <- parseFormula(formula, data$covs)
X <- as.matrix(tmp[[1]])
X.re <- as.matrix(tmp[[4]])
x.re.names <- colnames(X.re)
x.names <- tmp[[2]]
} else {
stop("error: formula is misspecified")
}
# Get RE level names
re.level.names <- lapply(data$covs[, x.re.names, drop = FALSE],
function (a) sort(unique(a)))
# Get basic info from inputs ------------------------------------------
# Number of sites
J <- nrow(coords)
# Number of occupancy parameters
p <- ncol(X)
# Number of occurrence random effect parameters
p.re <- ncol(X.re)
# Number of latent occupancy random effect values
n.re <- length(unlist(apply(X.re, 2, unique)))
n.re.long <- apply(X.re, 2, function(a) length(unique(a)))
if (missing(n.batch)) {
stop("error: must specify number of MCMC batches")
}
if (missing(batch.length)) {
stop("error: must specify length of each MCMC batch")
}
n.samples <- n.batch * batch.length
if (n.burn > n.samples) {
stop("error: n.burn must be less than n.samples")
}
if (n.thin > n.samples) {
stop("error: n.thin must be less than n.samples")
}
# Check if n.burn, n.thin, and n.samples result in an integer and error if otherwise.
if (((n.samples - n.burn) / n.thin) %% 1 != 0) {
stop("the number of posterior samples to save ((n.samples - n.burn) / n.thin) is not a whole number. Please respecify the MCMC criteria such that the number of posterior samples saved is a whole number.")
}
# Check SVC columns -----------------------------------------------------
if (is.character(svc.cols)) {
# Check if all column names in svc are in covs
if (!all(svc.cols %in% x.names)) {
missing.cols <- svc.cols[!(svc.cols %in% x.names)]
stop(paste("error: variable name ", paste(missing.cols, collapse=" and "), " not inurrence covariates", sep=""))
}
# Convert desired column names into the numeric column index
svc.cols <- (1:p)[x.names %in% svc.cols]
} else if (is.numeric(svc.cols)) {
# Check if all column indices are in 1:p
if (!all(svc.cols %in% 1:p)) {
missing.cols <- svc.cols[!(svc.cols %in% (1:p))]
stop(paste("error: column index ", paste(missing.cols, collapse=" "), " not in design matrix columns", sep=""))
}
}
p.svc <- length(svc.cols)
# Get random effect matrices all set ----------------------------------
if (p.re > 1) {
for (j in 2:p.re) {
X.re[, j] <- X.re[, j] + max(X.re[, j - 1]) + 1
}
}
# Priors --------------------------------------------------------------
if (missing(priors)) {
priors <- list()
}
names(priors) <- tolower(names(priors))
# Logical vector indicating what parameters are estimated and what
# parameters are fixed. 6 is the total number of parameter types that
# can be estimated here. Note that phi and nu are both fixed if phi.unif = 'fixed'
all.params <- c('beta', 'alpha', 'phi', 'sigma.sq',
'sigma.sq.psi', 'sigma.sq.p')
n.params <- length(all.params)
fixed.params <- rep(FALSE, n.params)
# beta -----------------------
if ("beta.normal" %in% names(priors)) {
if (!is.list(priors$beta.normal) | length(priors$beta.normal) != 2) {
stop("error: beta.normal must be a list of length 2")
}
mu.beta <- priors$beta.normal[[1]]
sigma.beta <- priors$beta.normal[[2]]
if (length(mu.beta) != p & length(mu.beta) != 1) {
if (p == 1) {
stop(paste("error: beta.normal[[1]] must be a vector of length ",
p, " with elements corresponding to betas' mean", sep = ""))
} else {
stop(paste("error: beta.normal[[1]] must be a vector of length ",
p, " or 1 with elements corresponding to betas' mean", sep = ""))
}
}
if (length(sigma.beta) != p & length(sigma.beta) != 1) {
if (p == 1) {
stop(paste("error: beta.normal[[2]] must be a vector of length ",
p, " with elements corresponding to betas' variance", sep = ""))
} else {
stop(paste("error: beta.normal[[2]] must be a vector of length ",
p, " or 1 with elements corresponding to betas' variance", sep = ""))
}
}
if (length(sigma.beta) != p) {
sigma.beta <- rep(sigma.beta, p)
}
if (length(mu.beta) != p) {
mu.beta <- rep(mu.beta, p)
}
Sigma.beta <- sigma.beta * diag(p)
} else {
if (verbose) {
message("No prior specified for beta.normal.\nSetting prior mean to 0 and prior variance to 2.72\n")
}
mu.beta <- rep(0, p)
sigma.beta <- rep(2.72, p)
Sigma.beta <- diag(p) * 2.72
}
# phi -----------------------------
# Get distance matrix which is used if priors are not specified
if ("phi.unif" %in% names(priors)) {
if (priors$phi.unif[1] == 'fixed') {
fixed.params[which(all.params == 'phi')] <- TRUE
phi.a <- rep(1, p.svc)
phi.b <- rep(1, p.svc)
if (cov.model == 'matern') {
message("phi is specified as fixed in priors$phi.unif. This will also fix nu at its initial value. Fixing phi without nu (or vice versa) is not supported.")
}
} else {
if (!is.list(priors$phi.unif) | length(priors$phi.unif) != 2) {
stop("error: phi.unif must be a list of length 2")
}
phi.a <- priors$phi.unif[[1]]
phi.b <- priors$phi.unif[[2]]
if (length(phi.a) != p.svc & length(phi.a) != 1) {
stop(paste("error: phi.unif[[1]] must be a vector of length ",
p.svc,
" or 1 with elements corresponding to phis' lower bound for each covariate with spatially-varying coefficients",
sep = ""))
}
if (length(phi.b) != p.svc & length(phi.b) != 1) {
stop(paste("error: phi.unif[[2]] must be a vector of length ",
p.svc,
" or 1 with elements corresponding to phis' upper bound for each covariate with spatially-varying coefficients", sep = ""))
}
if (length(phi.a) != p.svc) {
phi.a <- rep(phi.a, p.svc)
}
if (length(phi.b) != p.svc) {
phi.b <- rep(phi.b, p.svc)
}
}
} else {
if (verbose) {
message("No prior specified for phi.unif.\nSetting uniform bounds based on the range of observed spatial coordinates.\n")
}
coords.D <- iDist(coords)
phi.a <- rep(3 / max(coords.D), p.svc)
phi.b <- rep(3 / sort(unique(c(coords.D)))[2], p.svc)
}
# sigma.sq -----------------------------
if (("sigma.sq.ig" %in% names(priors)) & ("sigma.sq.unif" %in% names(priors))) {
stop("error: cannot specify both an IG and a uniform prior for sigma.sq")
}
if ("sigma.sq.ig" %in% names(priors)) {
sigma.sq.ig <- TRUE
if (priors$sigma.sq.ig[1] == 'fixed') { # inverse-Gamma
fixed.params[which(all.params == 'sigma.sq')] <- TRUE
sigma.sq.a <- rep(1, p.svc)
sigma.sq.b <- rep(1, p.svc)
} else {
if (!is.list(priors$sigma.sq.ig) | length(priors$sigma.sq.ig) != 2) {
stop("error: sigma.sq.ig must be a list of length 2")
}
sigma.sq.a <- priors$sigma.sq.ig[[1]]
sigma.sq.b <- priors$sigma.sq.ig[[2]]
if (length(sigma.sq.a) != p.svc & length(sigma.sq.a) != 1) {
stop(paste("error: sigma.sq.ig[[1]] must be a vector of length ",
p.svc, " or 1 with elements corresponding to sigma.sqs' shape for each covariate with spatially-varying coefficients", sep = ""))
}
if (length(sigma.sq.b) != p.svc & length(sigma.sq.b) != 1) {
stop(paste("error: sigma.sq.ig[[2]] must be a vector of length ",
p.svc, " or 1 with elements corresponding to sigma.sqs' scale for each covariate with spatially-varying coefficients", sep = ""))
}
if (length(sigma.sq.a) != p.svc) {
sigma.sq.a <- rep(sigma.sq.a, p.svc)
}
if (length(sigma.sq.b) != p.svc) {
sigma.sq.b <- rep(sigma.sq.b, p.svc)
}
}
} else if ("sigma.sq.unif" %in% names(priors)) { # uniform prior
if (priors$sigma.sq.unif[1] == 'fixed') {
sigma.sq.ig <- TRUE # This just makes the C++ side a bit easier
fixed.params[which(all.params == 'sigma.sq')] <- TRUE
sigma.sq.a <- 1
sigma.sq.b <- 1
} else {
sigma.sq.ig <- FALSE
if (!is.list(priors$sigma.sq.unif) | length(priors$sigma.sq.unif) != 2) {
stop("error: sigma.sq.unif must be a list of length 2")
}
sigma.sq.a <- priors$sigma.sq.unif[[1]]
sigma.sq.b <- priors$sigma.sq.unif[[2]]
if (length(sigma.sq.a) != p.svc & length(sigma.sq.a) != 1) {
stop(paste("error: sigma.sq.unif[[1]] must be a vector of length ",
p.svc, " or 1 with elements corresponding to sigma.sqs' shape for each covariate with spatially-varying coefficients", sep = ""))
}
if (length(sigma.sq.b) != p.svc & length(sigma.sq.b) != 1) {
stop(paste("error: sigma.sq.unif[[2]] must be a vector of length ",
p.svc, " or 1 with elements corresponding to sigma.sqs' scale for each covariate with spatially-varying coefficients", sep = ""))
}
if (length(sigma.sq.a) != p.svc) {
sigma.sq.a <- rep(sigma.sq.a, p.svc)
}
if (length(sigma.sq.b) != p.svc) {
sigma.sq.b <- rep(sigma.sq.b, p.svc)
}
}
} else {
if (verbose) {
message("No prior specified for sigma.sq.\nUsing an inverse-Gamma prior with the shape parameter set to 2 and scale parameter to 1.\n")
}
sigma.sq.ig <- TRUE
sigma.sq.a <- rep(2, p.svc)
sigma.sq.b <- rep(1, p.svc)
}
# nu -----------------------------
if (cov.model == "matern") {
if (!"nu.unif" %in% names(priors)) {
stop("error: nu.unif must be specified in priors value list")
}
nu.a <- priors$nu.unif[[1]]
nu.b <- priors$nu.unif[[2]]
if (!is.list(priors$nu.unif) | length(priors$nu.unif) != 2) {
stop("error: nu.unif must be a list of length 2")
}
if (length(nu.a) != p.svc & length(nu.a) != 1) {
stop(paste("error: nu.unif[[1]] must be a vector of length ",
p.svc, " or 1 with elements corresponding to nus' lower bound for each covariate with spatially-varying coefficients", sep = ""))
}
if (length(nu.b) != p.svc & length(nu.b) != 1) {
stop(paste("error: nu.unif[[2]] must be a vector of length ",
p.svc, " or 1 with elements corresponding to nus' upper bound for each covariate with spatially-varying coefficients", sep = ""))
}
if (length(nu.a) != p.svc) {
nu.a <- rep(nu.a, p.svc)
}
if (length(nu.b) != p.svc) {
nu.b <- rep(nu.b, p.svc)
}
} else {
nu.a <- rep(0, p.svc)
nu.b <- rep(0, p.svc)
}
# sigma.sq.psi --------------------
if (p.re > 0) {
if ("sigma.sq.psi.ig" %in% names(priors)) {
if (!is.list(priors$sigma.sq.psi.ig) | length(priors$sigma.sq.psi.ig) != 2) {
stop("error: sigma.sq.psi.ig must be a list of length 2")
}
sigma.sq.psi.a <- priors$sigma.sq.psi.ig[[1]]
sigma.sq.psi.b <- priors$sigma.sq.psi.ig[[2]]
if (length(sigma.sq.psi.a) != p.re & length(sigma.sq.psi.a) != 1) {
if (p.re == 1) {
stop(paste("error: sigma.sq.psi.ig[[1]] must be a vector of length ",
p.re, " with elements corresponding to sigma.sq.psis' shape", sep = ""))
} else {
stop(paste("error: sigma.sq.psi.ig[[1]] must be a vector of length ",
p.re, " or 1 with elements corresponding to sigma.sq.psis' shape", sep = ""))
}
}
if (length(sigma.sq.psi.b) != p.re & length(sigma.sq.psi.b) != 1) {
if (p.re == 1) {
stop(paste("error: sigma.sq.psi.ig[[2]] must be a vector of length ",
p.re, " with elements corresponding to sigma.sq.psis' scale", sep = ""))
} else {
stop(paste("error: sigma.sq.psi.ig[[2]] must be a vector of length ",
p.re, " or 1with elements corresponding to sigma.sq.psis' scale", sep = ""))
}
}
if (length(sigma.sq.psi.a) != p.re) {
sigma.sq.psi.a <- rep(sigma.sq.psi.a, p.re)
}
if (length(sigma.sq.psi.b) != p.re) {
sigma.sq.psi.b <- rep(sigma.sq.psi.b, p.re)
}
} else {
if (verbose) {
message("No prior specified for sigma.sq.psi.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
}
sigma.sq.psi.a <- rep(0.1, p.re)
sigma.sq.psi.b <- rep(0.1, p.re)
}
} else {
sigma.sq.psi.a <- 0
sigma.sq.psi.b <- 0
}
# Starting values -----------------------------------------------------
if (missing(inits)) {
inits <- list()
}
names(inits) <- tolower(names(inits))
# beta -----------------------
if ("beta" %in% names(inits)) {
beta.inits <- inits[["beta"]]
if (length(beta.inits) != p & length(beta.inits) != 1) {
if (p == 1) {
stop(paste("error: initial values for beta must be of length ", p,
sep = ""))
} else {
stop(paste("error: initial values for beta must be of length ", p, " or 1",
sep = ""))
}
}
if (length(beta.inits) != p) {
beta.inits <- rep(beta.inits, p)
}
} else {
beta.inits <- rnorm(p, mu.beta, sqrt(sigma.beta))
if (verbose) {
message('beta is not specified in initial values.\nSetting initial values to random values from the prior distribution\n')
}
}
# phi -----------------------------
if ("phi" %in% names(inits)) {
phi.inits <- inits[["phi"]]
if (length(phi.inits) != p.svc & length(phi.inits) != 1) {
stop(paste("error: initial values for phi must be of length ", p.svc, " or 1",
sep = ""))
}
if (length(phi.inits) != p.svc) {
phi.inits <- rep(phi.inits, p.svc)
}
} else {
phi.inits <- runif(p.svc, phi.a, phi.b)
if (verbose) {
message("phi is not specified in initial values.\nSetting initial value to random values from the prior distribution\n")
}
}
# sigma.sq ------------------------
if ("sigma.sq" %in% names(inits)) {
sigma.sq.inits <- inits[["sigma.sq"]]
if (length(sigma.sq.inits) != p.svc & length(sigma.sq.inits) != 1) {
stop(paste("error: initial values for sigma.sq must be of length ", p.svc, " or 1",
sep = ""))
}
if (length(sigma.sq.inits) != p.svc) {
sigma.sq.inits <- rep(sigma.sq.inits, p.svc)
}
} else {
if (sigma.sq.ig) {
sigma.sq.inits <- rigamma(p.svc, sigma.sq.a, sigma.sq.b)
} else {
sigma.sq.inits <- runif(p.svc, sigma.sq.a, sigma.sq.b)
}
if (verbose) {
message("sigma.sq is not specified in initial values.\nSetting initial values to random values from the prior distribution\n")
}
}
# w -----------------------------
if ("w" %in% names(inits)) {
w.inits <- inits[["w"]]
if (!is.matrix(w.inits)) {
stop(paste("error: initial values for w must be a matrix with dimensions ",
p.svc, " x ", J, sep = ""))
}
if (nrow(w.inits) != p.svc | ncol(w.inits) != J) {
stop(paste("error: initial values for w must be a matrix with dimensions ",
p.svc, " x ", J, sep = ""))
}
if (NNGP) {
w.inits <- w.inits[, ord, drop = FALSE]
}
} else {
w.inits <- matrix(0, p.svc, J)
if (verbose) {
message("w is not specified in initial values.\nSetting initial value to 0\n")
}
}
# nu ------------------------
if ("nu" %in% names(inits)) {
nu.inits <- inits[["nu"]]
if (length(nu.inits) != p.svc & length(nu.inits) != 1) {
stop(paste("error: initial values for nu must be of length ", p.svc, " or 1",
sep = ""))
}
if (length(nu.inits) != p.svc) {
nu.inits <- rep(nu.inits, p.svc)
}
} else {
if (cov.model == 'matern') {
if (verbose) {
message("nu is not specified in initial values.\nSetting initial values to random values from the prior distribution\n")
}
nu.inits <- runif(p.svc, nu.a, nu.b)
} else {
nu.inits <- rep(0, p.svc)
}
}
# sigma.sq.psi -------------------
if (p.re > 0) {
if ("sigma.sq.psi" %in% names(inits)) {
sigma.sq.psi.inits <- inits[["sigma.sq.psi"]]
if (length(sigma.sq.psi.inits) != p.re & length(sigma.sq.psi.inits) != 1) {
if (p.re == 1) {
stop(paste("error: initial values for sigma.sq.psi must be of length ", p.re,
sep = ""))
} else {
stop(paste("error: initial values for sigma.sq.psi must be of length ", p.re,
" or 1", sep = ""))
}
}
if (length(sigma.sq.psi.inits) != p.re) {
sigma.sq.psi.inits <- rep(sigma.sq.psi.inits, p.re)
}
} else {
sigma.sq.psi.inits <- runif(p.re, 0.5, 10)
if (verbose) {
message("sigma.sq.psi is not specified in initial values.\nSetting initial values to random values between 0.5 and 10\n")
}
}
beta.star.indx <- rep(0:(p.re - 1), n.re.long)
beta.star.inits <- rnorm(n.re, 0, sqrt(sigma.sq.psi.inits[beta.star.indx + 1]))
} else {
sigma.sq.psi.inits <- 0
beta.star.indx <- 0
beta.star.inits <- 0
}
# Should initial values be fixed --
if ("fix" %in% names(inits)) {
fix.inits <- inits[["fix"]]
if ((fix.inits != TRUE) & (fix.inits != FALSE)) {
stop(paste("error: inits$fix must take value TRUE or FALSE"))
}
} else {
fix.inits <- FALSE
}
if (verbose & fix.inits & (n.chains > 1)) {
message("Fixing initial values across all chains\n")
}
# Covariance Model ----------------------------------------------------
# Order must match util.cpp spCor.
cov.model.names <- c("exponential", "spherical", "matern", "gaussian")
if(! cov.model %in% cov.model.names){
stop("error: specified cov.model '",cov.model,"' is not a valid option; choose from ",
paste(cov.model.names, collapse=", ", sep="") ,".")}
# Obo for cov model lookup on c side
cov.model.indx <- which(cov.model == cov.model.names) - 1
storage.mode(cov.model.indx) <- "integer"
# Prep for SVCs ---------------------------------------------------------
X.w <- X[, svc.cols, drop = FALSE]
# Get tuning values ---------------------------------------------------
# Not accessed, but necessary to keep things in line.
sigma.sq.tuning <- rep(0, p.svc)
phi.tuning <- rep(0, p.svc)
nu.tuning <- rep(0, p.svc)
if (missing(tuning)) {
phi.tuning <- rep(1, p.svc)
if (cov.model == 'matern') {
nu.tuning <- rep(1, p.svc)
}
if (!sigma.sq.ig) {
sigma.sq.tuning <- 1
}
} else {
names(tuning) <- tolower(names(tuning))
# phi ---------------------------
if(!"phi" %in% names(tuning)) {
stop("error: phi must be specified in tuning value list")
}
phi.tuning <- tuning$phi
if (length(phi.tuning) == 1) {
phi.tuning <- rep(tuning$phi, p.svc)
} else if (length(phi.tuning) != p.svc) {
stop(paste("error: phi tuning must be either a single value or a vector of length ",
p.svc, sep = ""))
}
if (cov.model == 'matern') {
# nu --------------------------
if(!"nu" %in% names(tuning)) {
stop("error: nu must be specified in tuning value list")
}
nu.tuning <- tuning$nu
if (length(nu.tuning) == 1) {
nu.tuning <- rep(tuning$nu, p.svc)
} else if (length(nu.tuning) != p.svc) {
stop(paste("error: nu tuning must be either a single value or a vector of length ",
p.svc, sep = ""))
}
}
if (!sigma.sq.ig) {
# sigma.sq --------------------------
if(!"sigma.sq" %in% names(tuning)) {
stop("error: sigma.sq must be specified in tuning value list")
}
sigma.sq.tuning <- tuning$sigma.sq
if (length(sigma.sq.tuning) == 1) {
sigma.sq.tuning <- rep(tuning$sigma.sq, p.svc)
} else if (length(sigma.sq.tuning) != p.svc) {
stop(paste("error: sigma.sq tuning must be either a single value or a vector of length ",
p.svc, sep = ""))
}
}
}
tuning.c <- log(c(sigma.sq.tuning, phi.tuning, nu.tuning))
# Set model.deviance to NA for returning when no cross-validation
model.deviance <- NA
curr.chain <- 1
if (!NNGP) {
stop("error: svcPGBinom is currently only implemented for NNGPs, not full Gaussian Processes. Please set NNGP = TRUE.")
} else {
# Nearest Neighbor Search ---------------------------------------------
if(verbose){
cat("----------------------------------------\n");
cat("\tBuilding the neighbor list\n");
cat("----------------------------------------\n");
}
search.type.names <- c("brute", "cb")
if(!search.type %in% search.type.names){
stop("error: specified search.type '",search.type,
"' is not a valid option; choose from ",
paste(search.type.names, collapse=", ", sep="") ,".")
}
storage.mode(n.neighbors) <- "integer"
storage.mode(n.omp.threads) <- "integer"
## Indexes
if(search.type == "brute"){
indx <- mkNNIndx(coords, n.neighbors, n.omp.threads)
} else{
indx <- mkNNIndxCB(coords, n.neighbors, n.omp.threads)
}
nn.indx <- indx$nnIndx
nn.indx.lu <- indx$nnIndxLU
nn.indx.run.time <- indx$run.time
storage.mode(nn.indx) <- "integer"
storage.mode(nn.indx.lu) <- "integer"
storage.mode(u.search.type) <- "integer"
storage.mode(J) <- "integer"
if(verbose){
cat("----------------------------------------\n");
cat("Building the neighbors of neighbors list\n");
cat("----------------------------------------\n");
}
indx <- mkUIndx(J, n.neighbors, nn.indx, nn.indx.lu, u.search.type)
u.indx <- indx$u.indx
u.indx.lu <- indx$u.indx.lu
ui.indx <- indx$ui.indx
u.indx.run.time <- indx$run.time
# Set storage for all variables ---------------------------------------
storage.mode(y) <- "double"
storage.mode(X) <- "double"
storage.mode(X.w) <- "double"
consts <- c(J, p, p.re, n.re, p.svc)
storage.mode(consts) <- "integer"
storage.mode(weights) <- "double"
storage.mode(coords) <- "double"
storage.mode(beta.inits) <- "double"
storage.mode(phi.inits) <- "double"
storage.mode(sigma.sq.inits) <- "double"
storage.mode(nu.inits) <- "double"
storage.mode(w.inits) <- "double"
storage.mode(mu.beta) <- "double"
storage.mode(Sigma.beta) <- "double"
storage.mode(phi.a) <- "double"
storage.mode(phi.b) <- "double"
storage.mode(nu.a) <- "double"
storage.mode(nu.b) <- "double"
storage.mode(sigma.sq.a) <- "double"
storage.mode(sigma.sq.b) <- "double"
storage.mode(sigma.sq.ig) <- "integer"
storage.mode(tuning.c) <- "double"
storage.mode(n.batch) <- "integer"
storage.mode(batch.length) <- "integer"
storage.mode(accept.rate) <- "double"
storage.mode(n.omp.threads) <- "integer"
storage.mode(verbose) <- "integer"
storage.mode(n.report) <- "integer"
storage.mode(nn.indx) <- "integer"
storage.mode(nn.indx.lu) <- "integer"
storage.mode(u.indx) <- "integer"
storage.mode(u.indx.lu) <- "integer"
storage.mode(ui.indx) <- "integer"
storage.mode(n.neighbors) <- "integer"
storage.mode(cov.model.indx) <- "integer"
chain.info <- c(curr.chain, n.chains)
storage.mode(chain.info) <- "integer"
storage.mode(fixed.params) <- "integer"
n.post.samples <- length(seq(from = n.burn + 1,
to = n.samples,
by = as.integer(n.thin)))
storage.mode(n.post.samples) <- "integer"
samples.info <- c(n.burn, n.thin, n.post.samples)
storage.mode(samples.info) <- "integer"
# For occurrence random effects
storage.mode(X.re) <- "integer"
beta.level.indx <- sort(unique(c(X.re)))
storage.mode(beta.level.indx) <- "integer"
storage.mode(sigma.sq.psi.inits) <- "double"
storage.mode(sigma.sq.psi.a) <- "double"
storage.mode(sigma.sq.psi.b) <- "double"
storage.mode(beta.star.inits) <- "double"
storage.mode(beta.star.indx) <- "integer"
# Fit the model -------------------------------------------------------
out.tmp <- list()
out <- list()
if (!k.fold.only) {
for (i in 1:n.chains) {
# Change initial values if i > 1
if ((i > 1) & (!fix.inits)) {
beta.inits <- rnorm(p, mu.beta, sqrt(sigma.beta))
if (!fixed.params[which(all.params == 'sigma.sq')]) {
if (sigma.sq.ig) {
sigma.sq.inits <- rigamma(p.svc, sigma.sq.a, sigma.sq.b)
} else {
sigma.sq.inits <- runif(p.svc, sigma.sq.a, sigma.sq.b)
}
}
phi.inits <- runif(p.svc, phi.a, phi.b)
if (cov.model == 'matern') {
nu.inits <- runif(p.svc, nu.a, nu.b)
}
if (p.re > 0) {
sigma.sq.psi.inits <- runif(p.re, 0.5, 10)
beta.star.inits <- rnorm(n.re, 0, sqrt(sigma.sq.psi.inits[beta.star.indx + 1]))
}
}
storage.mode(chain.info) <- "integer"
# Run the model in C
out.tmp[[i]] <- .Call("svcPGBinomNNGP", y, X, X.w, coords, X.re, consts,
weights, n.re.long,
n.neighbors, nn.indx, nn.indx.lu, u.indx, u.indx.lu, ui.indx,
beta.inits, sigma.sq.psi.inits, beta.star.inits,
w.inits, phi.inits, sigma.sq.inits, nu.inits,
beta.star.indx, beta.level.indx, mu.beta,
Sigma.beta, phi.a, phi.b,
sigma.sq.a, sigma.sq.b, nu.a, nu.b,
sigma.sq.psi.a, sigma.sq.psi.b,
tuning.c, cov.model.indx,
n.batch, batch.length,
accept.rate, n.omp.threads, verbose, n.report,
samples.info, chain.info, fixed.params, sigma.sq.ig)
chain.info[1] <- chain.info[1] + 1
}
# Calculate R-Hat ---------------
out$rhat <- list()
if (n.chains > 1) {
# as.vector removes the "Upper CI" when there is only 1 variable.
out$rhat$beta <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$beta.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
if (!fixed.params[which(all.params == 'sigma.sq')] &
!fixed.params[which(all.params == 'phi')]) { # none are fixed
out$rhat$theta <- gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$theta.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2]
} else if (fixed.params[which(all.params == 'sigma.sq')] &
!fixed.params[which(all.params == 'phi')]) { # sigma.sq is fixed
out$rhat$theta <- c(NA, gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$theta.samples[-1, , drop = FALSE])))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
} else if (!fixed.params[which(all.params == 'sigma.sq')] &
fixed.params[which(all.params == 'phi')]) { # phi/nu is fixed
tmp <- ifelse(cov.model == 'matern', NA, c(NA, NA))
out$rhat$theta <- c(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$theta.samples[1, , drop = FALSE])))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2], tmp)
} else { # both are fixed
out$rhat$theta <- rep(NA, ifelse(cov.model == 'matern', 3, 2))
}
if (p.re > 0) {
out$rhat$sigma.sq.psi <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$sigma.sq.psi.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
}
} else {
out$rhat$beta <- rep(NA, p)
out$rhat$theta <- rep(NA, ifelse(cov.model == 'matern', 3 * p.svc, 2 * p.svc))
if (p.re > 0) {
out$rhat$sigma.sq.psi <- rep(NA, p.re)
}
}
out$beta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$beta.samples))))
colnames(out$beta.samples) <- x.names
out$theta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$theta.samples))))
if (cov.model != 'matern') {
theta.names <- paste(rep(c('sigma.sq', 'phi'), each = p.svc), x.names[svc.cols], sep = '-')
} else {
theta.names <- paste(rep(c('sigma.sq', 'phi', 'nu'), each = p.svc), x.names[svc.cols], sep = '-')
}
colnames(out$theta.samples) <- theta.names
# Get everything back in the original order
out$coords <- coords[order(ord), ]
out$y.rep.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$y.rep.samples))))
out$y.rep.samples <- mcmc(out$y.rep.samples[, order(ord), drop = FALSE])
out$X <- X[order(ord), , drop = FALSE]
out$X.re <- X.re[order(ord), , drop = FALSE]
out$X.w <- X.w[order(ord), , drop = FALSE]
# Account for case when intercept only spatial model.
if (p.svc == 1) {
tmp <- do.call(rbind, lapply(out.tmp, function(a) t(a$w.samples)))
tmp <- tmp[, order(ord), drop = FALSE]
out$w.samples <- array(NA, dim = c(p.svc, J, n.post.samples * n.chains))
out$w.samples[1, , ] <- t(tmp)
} else {
out$w.samples <- do.call(abind, lapply(out.tmp, function(a) array(a$w.samples,
dim = c(p.svc, J, n.post.samples))))
out$w.samples <- out$w.samples[, order(ord), ]
}
out$w.samples <- aperm(out$w.samples, c(3, 1, 2))
out$psi.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$psi.samples))))
out$psi.samples <- mcmc(out$psi.samples[, order(ord), drop = FALSE])
out$like.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$like.samples))))
out$like.samples <- mcmc(out$like.samples[, order(ord), drop = FALSE])
out$y <- y[order(ord)]
if (p.re > 0) {
out$sigma.sq.psi.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$sigma.sq.psi.samples))))
colnames(out$sigma.sq.psi.samples) <- x.re.names
out$beta.star.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$beta.star.samples))))
tmp.names <- unlist(re.level.names)
beta.star.names <- paste(rep(x.re.names, n.re.long), tmp.names, sep = '-')
colnames(out$beta.star.samples) <- beta.star.names
out$re.level.names <- re.level.names
}
# Calculate effective sample sizes
out$ESS <- list()
out$ESS$beta <- effectiveSize(out$beta.samples)
out$ESS$theta <- effectiveSize(out$theta.samples)
if (p.re > 0) {
out$ESS$sigma.sq.psi <- effectiveSize(out$sigma.sq.psi.samples)
}
out$call <- cl
out$n.samples <- batch.length * n.batch
out$n.neighbors <- n.neighbors
out$cov.model.indx <- cov.model.indx
out$svc.cols <- svc.cols
out$type <- "NNGP"
out$n.post <- n.post.samples
out$n.thin <- n.thin
out$n.burn <- n.burn
out$n.chains <- n.chains
if (p.re > 0) {
out$psiRE <- TRUE
} else {
out$psiRE <- FALSE
}
}
# K-fold cross-validation ---------
if (!missing(k.fold)) {
if (verbose) {
cat("----------------------------------------\n");
cat("\tCross-validation\n");
cat("----------------------------------------\n");
message(paste("Performing ", k.fold, "-fold cross-validation using ", k.fold.threads,
" thread(s).", sep = ''))
}
set.seed(k.fold.seed)
# Number of sites in each hold out data set.
sites.random <- sample(1:J)
sites.k.fold <- split(sites.random, sites.random %% k.fold)
registerDoParallel(k.fold.threads)
model.deviance <- foreach (i = 1:k.fold, .combine = sum) %dopar% {
curr.set <- sort(sites.random[sites.k.fold[[i]]])
y.fit <- y[-curr.set]
y.0 <- y[curr.set]
X.fit <- X[-curr.set, , drop = FALSE]
X.0 <- X[curr.set, , drop = FALSE]
X.w.fit <- X.w[-curr.set, , drop = FALSE]
X.w.0 <- X.w[curr.set, , drop = FALSE]
J.fit <- nrow(X.fit)
J.0 <- nrow(X.0)
coords.fit <- coords[-curr.set, , drop = FALSE]
coords.0 <- coords[curr.set, , drop = FALSE]
weights.fit <- weights[-curr.set]
weights.0 <- weights[curr.set]
# Random Occurrence Effects
X.re.fit <- X.re[-curr.set, , drop = FALSE]
X.re.0 <- X.re[curr.set, , drop = FALSE]
n.re.fit <- length(unique(c(X.re.fit)))
n.re.long.fit <- apply(X.re.fit, 2, function(a) length(unique(a)))
if (p.re > 0) {
beta.star.indx.fit <- rep(0:(p.re - 1), n.re.long.fit)
beta.level.indx.fit <- sort(unique(c(X.re.fit)))
beta.star.inits.fit <- rnorm(n.re.fit, 0,
sqrt(sigma.sq.psi.inits[beta.star.indx.fit + 1]))
re.level.names.fit <- list()
for (t in 1:p.re) {
tmp.indx <- beta.level.indx.fit[beta.star.indx.fit == t - 1]
re.level.names.fit[[t]] <- unlist(re.level.names)[tmp.indx + 1]
}
} else {
beta.star.indx.fit <- beta.star.indx
beta.level.indx.fit <- beta.level.indx
beta.star.inits.fit <- beta.star.inits
re.level.names.fit <- re.level.names
}
# Nearest Neighbor Search ---
verbose.fit <- FALSE
n.omp.threads.fit <- 1
## Indexes
if(search.type == "brute"){
indx <- mkNNIndx(coords.fit, n.neighbors, n.omp.threads.fit)
} else{
indx <- mkNNIndxCB(coords.fit, n.neighbors, n.omp.threads.fit)
}
nn.indx.fit <- indx$nnIndx
nn.indx.lu.fit <- indx$nnIndxLU
indx <- mkUIndx(J.fit, n.neighbors, nn.indx.fit,
nn.indx.lu.fit, u.search.type)
u.indx.fit <- indx$u.indx
u.indx.lu.fit <- indx$u.indx.lu
ui.indx.fit <- indx$ui.indx
storage.mode(y.fit) <- "double"
storage.mode(X.fit) <- "double"
storage.mode(X.w.fit) <- "double"
storage.mode(coords.fit) <- "double"
storage.mode(weights.fit) <- "double"
consts.fit <- c(J.fit, p, p.re, n.re.fit, p.svc)
storage.mode(consts.fit) <- "integer"
storage.mode(nn.indx.fit) <- "integer"
storage.mode(nn.indx.lu.fit) <- "integer"
storage.mode(u.indx.fit) <- "integer"
storage.mode(u.indx.lu.fit) <- "integer"
storage.mode(ui.indx.fit) <- "integer"
storage.mode(n.samples) <- "integer"
storage.mode(n.omp.threads.fit) <- "integer"
storage.mode(verbose.fit) <- "integer"
storage.mode(n.report) <- "integer"
storage.mode(X.re.fit) <- "integer"
storage.mode(n.re.long.fit) <- "integer"
storage.mode(beta.star.inits.fit) <- "double"
storage.mode(beta.star.indx.fit) <- "integer"
storage.mode(beta.level.indx.fit) <- "integer"
chain.info[1] <- 1
storage.mode(chain.info) <- "integer"
# Run the model in C
out.fit <- .Call("svcPGBinomNNGP", y.fit, X.fit, X.w.fit, coords.fit, X.re.fit,
consts.fit, weights.fit, n.re.long.fit,
n.neighbors, nn.indx.fit, nn.indx.lu.fit, u.indx.fit,
u.indx.lu.fit, ui.indx.fit, beta.inits,
sigma.sq.psi.inits, beta.star.inits.fit,
w.inits, phi.inits, sigma.sq.inits,
nu.inits, beta.star.indx.fit,
beta.level.indx.fit, mu.beta,
Sigma.beta, phi.a, phi.b,
sigma.sq.a, sigma.sq.b, nu.a, nu.b, sigma.sq.psi.a, sigma.sq.psi.b,
tuning.c, cov.model.indx,
n.batch, batch.length, accept.rate, n.omp.threads.fit, verbose.fit,
n.report, samples.info, chain.info, fixed.params, sigma.sq.ig)
out.fit$beta.samples <- mcmc(t(out.fit$beta.samples))
colnames(out.fit$beta.samples) <- x.names
out.fit$theta.samples <- mcmc(t(out.fit$theta.samples))
# Account for case when intercept only spatial model.
if (p.svc == 1) {
tmp <- t(out.fit$w.samples)
out.fit$w.samples <- array(NA, dim = c(p.svc, J.fit, n.post.samples * n.chains))
out.fit$w.samples[1, , ] <- tmp
} else {
out.fit$w.samples <- array(out.fit$w.samples, dim = c(p.svc, J.fit, n.post.samples))
}
out.fit$w.samples <- aperm(out.fit$w.samples, c(3, 1, 2))
out.fit$X <- X.fit
out.fit$y <- y.fit
out.fit$call <- cl
out.fit$type <- "NNGP"
out.fit$n.neighbors <- n.neighbors
out.fit$n.samples <- n.samples
out.fit$coords <- coords.fit
out.fit$cov.model.indx <- cov.model.indx
out.fit$svc.cols <- svc.cols
out.fit$n.post <- n.post.samples
out.fit$n.thin <- n.thin
out.fit$n.burn <- n.burn
out.fit$n.chains <- 1
if (p.re > 0) {
out.fit$sigma.sq.psi.samples <- mcmc(t(out.fit$sigma.sq.psi.samples))
colnames(out.fit$sigma.sq.psi.samples) <- x.re.names
out.fit$beta.star.samples <- mcmc(t(out.fit$beta.star.samples))
tmp.names <- unlist(re.level.names.fit)
beta.star.names <- paste(rep(x.re.names, n.re.long.fit), tmp.names, sep = '-')
colnames(out.fit$beta.star.samples) <- beta.star.names
out.fit$re.level.names <- re.level.names.fit
out.fit$X.re <- X.re.fit
}
if (p.re > 0) {
out.fit$psiRE <- TRUE
} else {
out.fit$psiRE <- FALSE
}
class(out.fit) <- "svcPGBinom"
# Predict occurrence at new sites
if (p.re > 0) {
tmp <- unlist(re.level.names)
X.re.0 <- matrix(tmp[c(X.re.0 + 1)], nrow(X.re.0), ncol(X.re.0))
colnames(X.re.0) <- x.re.names
}
if (p.re > 0) {
X.0 <- cbind(X.0, X.re.0)
}
out.pred <- predict.svcPGBinom(out.fit, X.0, coords.0, weights.0, verbose = FALSE)
like.samples <- rep(NA, J.0)
for (j in 1:J.0) {
like.samples[j] <- mean(dbinom(y.0[j], weights.0[j], out.pred$psi.0.samples[, j]))
}
sum(log(like.samples), na.rm = TRUE)
}
model.deviance <- -2 * model.deviance
# Return objects from cross-validation
out$k.fold.deviance <- model.deviance
stopImplicitCluster()
} # cross-validation
} # NNGP or GP
class(out) <- "svcPGBinom"
out$run.time <- proc.time() - ptm
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.