Nothing
tIntPGOcc <- function(occ.formula, det.formula, data, inits, priors, tuning,
n.batch, batch.length, accept.rate = 0.43,
n.omp.threads = 1, verbose = TRUE, ar1 = FALSE,
n.report = 100, n.burn = round(.10 * n.batch * batch.length),
n.thin = 1, n.chains = 1, ...){
ptm <- proc.time()
# Make it look nice
if (verbose) {
cat("----------------------------------------\n");
cat("\tPreparing the data\n");
cat("----------------------------------------\n");
}
# Check for unused arguments ------------------------------------------
formal.args <- names(formals(sys.function(sys.parent())))
elip.args <- names(list(...))
for(i in elip.args){
if(! i %in% formal.args)
warning("'",i, "' is not an argument")
}
# Call ----------------------------------------------------------------
# Returns a call in which all of the specified arguments are
# specified by their full names.
cl <- match.call()
# Some initial checks -------------------------------------------------
if (missing(data)) {
stop("error: data must be specified")
}
if (!is.list(data)) {
stop("error: data must be a list")
}
names(data) <- tolower(names(data))
if (missing(occ.formula)) {
stop("error: occ.formula must be specified")
}
if (missing(det.formula)) {
stop("error: det.formula must be specified")
}
if (!'y' %in% names(data)) {
stop("error: detection-nondetection data y must be specified in data")
}
if (!is.list(data$y)) {
stop("error: y must be a list of detection-nondetection data sets")
}
y <- data$y
n.data <- length(y)
if (!is.list(det.formula)) {
stop(paste("error: det.formula must be a list of ", n.data, " formulas", sep = ''))
}
for (q in 1:n.data) {
if (length(dim(y[[q]])) != 3) {
stop('Each individual data source in data$y must be specified as a three-dimensional array with dimensions corresponding to site, seasons, and replicate within season. Note that even if a data source is sampled only for one season or only one visit within a season, it still must be specified as a three-dimensional array')
}
}
if (!'sites' %in% names(data)) {
stop("site ids (sites) must be specified in data")
}
sites <- data$sites
# Number of sites with at least one data source
J <- length(unique(unlist(sites)))
# Number of sites for each data set
J.long <- sapply(y, function(a) dim(a)[[1]])
if (!'seasons' %in% names(data)) {
stop("seasons must be specified in data")
}
seasons <- data$seasons
# Number of seasons with at least one data source
n.years.total <- length(unique(unlist(seasons)))
# Number of seasons for each data set
n.years.by.data <- sapply(seasons, length)
# Check occupancy covariates
if (!'occ.covs' %in% names(data)) {
if (occ.formula == ~ 1) {
if (verbose) {
message("Occupancy covariates (occ.covs) not specified in data.\nAssuming intercept only occupancy model.\n")
}
data$occ.covs <- matrix(1, J, n.years.total)
} else {
stop("occ.covs must be specified in data for an occupancy model with covariates")
}
}
if (!is.list(data$occ.covs)) {
stop("occ.covs must be a list of matrices, data frames, and/or vectors")
}
# Check detection covariates
if (!'det.covs' %in% names(data)) {
data$det.covs <- list()
for (i in 1:n.data) {
if (verbose) {
message("detection covariates (det.covs) not specified in data.\nAssuming interept only detection model for each data source.\n")
}
det.formula.curr <- det.formula[[i]]
if (det.formula.curr == ~ 1) {
for (i in 1:n.data) {
data$det.covs[[i]] <- list(int = array(1, dim = dim(y[[1]])))
}
} else {
stop("error: det.covs must be specified in data for a detection model with covariates")
}
}
}
# Reformat covariates ---------------------------------------------------
# Get detection covariates in proper format for each data set
y.big <- vector(mode = 'list', length = n.data)
for (i in 1:n.data) {
# First subset detection covariates to only use those that are included in the analysis.
data$det.covs[[i]] <- data$det.covs[[i]][names(data$det.covs[[i]]) %in% all.vars(det.formula[[i]])]
# Null model support
if (length(data$det.covs[[i]]) == 0) {
data$det.covs[[i]] <- list(int = array(1, dim = dim(y[[i]])))
}
# Turn the covariates into a data frame. Unlist is necessary for when factors
# are supplied.
# Ordered by visit, year, then site.
data$det.covs[[i]] <- data.frame(lapply(data$det.covs[[i]], function(a) unlist(c(a))))
# Get detection covariates in site x year x replicate format
if (nrow(data$det.covs[[i]]) == dim(y[[i]])[1]) { # if only site-level covariates.
data$det.covs[[i]] <- as.data.frame(mapply(rep, data$det.covs[[i]], dim(y[[i]])[2] * dim(y[[i]])[3]))
} else if (nrow(data$det.covs[[i]]) == dim(y[[i]])[1] * dim(y[[i]])[2]) { # if only site/year level covariates
data$det.covs[[i]] <- as.data.frame(mapply(rep, data$det.covs[[i]], dim(y[[i]])[3]))
}
y.big[[i]] <- y[[i]]
}
# Get occurrence covariates in proper format
# Subset covariates to only use those that are included in the analysis
data$occ.covs <- data$occ.covs[names(data$occ.covs) %in% all.vars(occ.formula)]
# Null model support
if (length(data$occ.covs) == 0) {
data$occ.covs <- list(int = matrix(1, nrow = J, ncol = n.years.total))
}
# Ordered by year, then site within year.
data$occ.covs <- data.frame(lapply(data$occ.covs, function(a) unlist(c(a))))
# Check if only site-level covariates are included
if (nrow(data$occ.covs) == J) {
data$occ.covs <- as.data.frame(mapply(rep, data$occ.covs, n.years.total))
}
# Checking missing values ---------------------------------------------
# y and det.covs --------------------
for (q in 1:n.data) {
y.na.test <- apply(y.big[[q]], 1, function(a) sum(!is.na(a)))
if (sum(y.na.test == 0) > 0) {
stop(paste0("some sites in data source ", q, " in y have all missing detection histories.\nRemove these sites from y and all objects in the 'data' argument if the site is not surveyed by another data source\n, then use 'predict' to obtain predictions at these locations if desired."))
}
for (i in 1:ncol(data$det.covs[[q]])) {
if (sum(is.na(data$det.covs[[q]][, i])) > sum(is.na(y.big[[q]]))) {
stop(paste0("some elements in det.covs for data set ", q, " have missing values where there is an observed data value in y. Please either replace the NA values in det.covs with non-missing values (e.g., mean imputation) or set the corresponding values in y to NA where the covariate is missing."))
}
}
}
# occ.covs ------------------------
if (sum(is.na(data$occ.covs)) != 0) {
stop("error: missing values in occ.covs. Please remove these sites from all objects in data or somehow replace the NA values with non-missing values (e.g., mean imputation).")
}
# Check for misalignment in y and det.covs
for (q in 1:n.data) {
if (det.formula[[q]] != ~ 1) {
# Misalignment between y and det.covs
y.missing <- which(is.na(y[[q]]))
det.covs.missing <- lapply(data$det.covs[[q]], function(a) which(is.na(a)))
for (i in 1:length(det.covs.missing)) {
tmp.indx <- !(y.missing %in% det.covs.missing[[i]])
if (sum(tmp.indx) > 0) {
if (i == 1 & verbose) {
message(paste0("There are missing values in data$y[[", q, "]] with corresponding non-missing values in data$det.covs[[", q, "]].\nRemoving these site/year/replicate combinations for fitting the model."))
}
data$det.covs[[q]][y.missing, i] <- NA
}
}
}
}
# Check whether random effects are sent in as numeric, and
# return error if they are.
# Occurrence ----------------------
if (!is.null(findbars(occ.formula))) {
occ.re.names <- sapply(findbars(occ.formula), all.vars)
for (i in 1:length(occ.re.names)) {
if (is(data$occ.covs[, occ.re.names[i]], 'factor')) {
stop(paste("error: random effect variable ", occ.re.names[i], " specified as a factor. Random effect variables must be specified as numeric.", sep = ''))
}
if (is(data$occ.covs[, occ.re.names[i]], 'character')) {
stop(paste("error: random effect variable ", occ.re.names[i], " specified as character. Random effect variables must be specified as numeric.", sep = ''))
}
}
}
# Detection -----------------------
for (q in 1:n.data) {
if (!is.null(findbars(det.formula[[q]]))) {
det.re.names <- sapply(findbars(det.formula[[q]]), all.vars)
for (i in 1:length(det.re.names)) {
if (is(data$det.covs[[q]][, det.re.names[i]], 'factor')) {
stop(paste("error: random effect variable ", det.re.names[i], " in data source ", q, " specified as a factor. Random effect variables must be specified as numeric.", sep = ''))
}
if (is(data$det.covs[[q]][, det.re.names[i]], 'character')) {
stop(paste("error: random effect variable ", det.re.names[i], "in data source ", q, " specified as character. Random effect variables must be specified as numeric.", sep = ''))
}
}
}
}
# Check ar1 parameter ---------------------------------------------------
if (!(ar1 %in% c(TRUE, FALSE))) {
stop("ar1 must be either TRUE or FALSE")
}
# Formula -------------------------------------------------------------
# Occupancy -----------------------
if (is(occ.formula, 'formula')) {
tmp <- parseFormula(occ.formula, data$occ.covs)
X <- as.matrix(tmp[[1]])
X.re <- as.matrix(tmp[[4]])
x.re.names <- colnames(X.re)
x.names <- tmp[[2]]
} else {
stop("error: occ.formula is misspecified")
}
# Get RE level names
re.level.names <- lapply(data$occ.covs[, x.re.names, drop = FALSE],
function (a) sort(unique(a)))
# Detection -----------------------
X.p <- list()
X.p.re <- list()
x.p.names <- list()
x.p.re.names <- list()
p.re.level.names <- list()
for (i in 1:n.data) {
if (is(det.formula[[i]], 'formula')) {
tmp <- parseFormula(det.formula[[i]], data$det.covs[[i]])
X.p[[i]] <- as.matrix(tmp[[1]])
x.p.names[[i]] <- tmp[[2]]
if (ncol(tmp[[4]]) > 0) {
X.p.re[[i]] <- as.matrix(tmp[[4]])
x.p.re.names[[i]] <- colnames(X.p.re[[i]])
p.re.level.names[[i]] <- lapply(data$det.covs[[i]][, x.p.re.names[[i]], drop = FALSE],
function (a) sort(unique(a)))
} else {
X.p.re[[i]] <- matrix(NA, 0, 0)
x.p.re.names[[i]] <- NULL
p.re.level.names[[i]] <- NULL
}
} else {
stop(paste("error: det.formula for data source ", i, " is misspecified", sep = ''))
}
}
x.p.names <- unlist(x.p.names)
x.p.re.names <- unlist(x.p.re.names)
# Get basic info from inputs ------------------------------------------
# J = total number of sites
# n.years.total = total number of years
# Number of occupancy effects
p.occ <- ncol(X)
# Number of occurrence random effect parameters
p.occ.re <- ncol(X.re)
# Number of detection random effect parameters for each data set
p.det.re.by.data <- sapply(X.p.re, ncol)
# Total number of detection random effects
p.det.re <- sum(p.det.re.by.data)
# Number of detection parameters for each data set
p.det.long <- sapply(X.p, function(a) dim(a)[[2]])
# Total number of detection parameters
p.det <- sum(p.det.long)
# Number of latent occupancy random effect values
n.occ.re <- length(unlist(apply(X.re, 2, unique)))
n.occ.re.long <- apply(X.re, 2, function(a) length(unique(a)))
# Number of levels for each detection random effect
n.det.re.long <- unlist(sapply(X.p.re, function(a) apply(a, 2, function(b) length(unique(b)))))
# Number of latent detection random effects for each data set
n.det.re.by.data <- sapply(sapply(X.p.re, function(a) apply(a, 2, function(b) length(unique(b)))), sum)
# Total number of detection random effect levels
n.det.re <- sum(n.det.re.by.data)
# Number of replicates at each site/year combo. This also inherently contains
# info on which sites were sampled in which years.
n.rep <- lapply(y, function(a1) apply(a1, c(1, 2), function(a2) sum(!is.na(a2))))
# Max number of repeat visits for each data set
K.long.max <- sapply(y, function(a) dim(a)[3])
# A few more checks -----------------------------------------------------
if (missing(n.batch)) {
stop("error: must specify number of MCMC batches")
}
if (missing(batch.length)) {
stop("error: must specify length of each MCMC batch")
}
n.samples <- n.batch * batch.length
if (n.burn > n.samples) {
stop("error: n.burn must be less than n.samples")
}
if (n.thin > n.samples) {
stop("error: n.thin must be less than n.samples")
}
# Check if n.burn, n.thin, and n.samples result in an integer and error if otherwise.
if (((n.samples - n.burn) / n.thin) %% 1 != 0) {
stop("the number of posterior samples to save ((n.samples - n.burn) / n.thin) is not a whole number. Please respecify the MCMC criteria such that the number of posterior samples saved is a whole number.")
}
# Get indices for mapping different values in Z.
z.site.indx <- rep(1:J, n.years.total) - 1
z.year.indx <- rep(1:n.years.total, each = J) - 1
# Form index that keeps track of whether or not the given site is sampled (in any data set)
# during a given year
z.dat.indx <- matrix(0, J, n.years.total)
for (q in 1:n.data) {
for (j in 1:nrow(n.rep[[q]])) {
for (t in 1:ncol(n.rep[[q]])) {
if (z.dat.indx[sites[[q]][j], seasons[[q]][t]] == 0) {
z.dat.indx[sites[[q]][j], seasons[[q]][t]] <- ifelse(n.rep[[q]][j, t] > 0, 1, 0)
}
}
}
}
# Get indices to map z to y -------------------------------------------
X.p.orig <- X.p
names.long <- list()
names.re.long <- list()
# Remove missing observations when the covariate data are available but
# there are missing detection-nondetection data
for (i in 1:n.data) {
if (nrow(X.p[[i]]) == length(y[[i]])) {
X.p[[i]] <- X.p[[i]][!is.na(y[[i]]), , drop = FALSE]
}
if (nrow(X.p.re[[i]]) == length(y[[i]]) & p.det.re.by.data[i] > 0) {
X.p.re[[i]] <- X.p.re[[i]][!is.na(y[[i]]), , drop = FALSE]
}
# Need these for later on
names.long[[i]] <- which(!is.na(y[[i]]))
}
n.obs.long <- sapply(X.p, nrow)
n.obs <- sum(n.obs.long)
# z.long.indx = links each element in the psi[j, t] (J x n.year.total) matrix to
# the corresponding observation in the y array. Each value is the
# cell in psi[j, t].
z.long.indx.r <- list()
# Matrix indicating the index in vector format for each cell of z
z.ind.mat <- matrix(1:(J * n.years.total), J, n.years.total)
for (i in 1:n.data) {
z.long.indx.r[[i]] <- rep(c(z.ind.mat[sites[[i]], seasons[[i]]]), K.long.max[i])
z.long.indx.r[[i]] <- z.long.indx.r[[i]][!is.na(c(y[[i]]))]
}
z.long.indx.r <- unlist(z.long.indx.r)
# Subtract 1 for c indices
z.long.indx.c <- z.long.indx.r - 1
# Get indices for WAIC calculation directly in C.
# n.waic is the number of site-year combinations for each data set, even if
# some of them aren't sampled.
n.waic <- 0
for (q in 1:n.data) {
n.waic <- n.waic + J.long[q] * n.years.by.data[q]
}
# Links each of the total site-year combinations in a data set to the corresponding
# cell in psi.
waic.cell.indx <- list()
for (q in 1:n.data) {
waic.cell.indx[[q]] <- c(z.ind.mat[sites[[q]], seasons[[q]]])
}
waic.cell.indx <- unlist(waic.cell.indx) - 1
# This should link each waic cell to a given n.obs value.
waic.n.obs.indx <- list()
tmp.start <- 0
for (i in 1:n.data) {
tmp.vals <- rep(1:(J.long[i] * n.years.by.data[i]), K.long.max[i])
tmp.vals <- tmp.vals[!is.na(c(y[[i]]))]
waic.n.obs.indx[[i]] <- tmp.vals + tmp.start
tmp.start <- tmp.start + (J.long[i] * n.years.by.data[i])
}
waic.n.obs.indx <- unlist(waic.n.obs.indx) - 1
y <- unlist(y)
y <- y[!is.na(y)]
# Index indicating the data set associated with each data point in y
data.indx.r <- rep(NA, n.obs)
indx <- 1
for (i in 1:n.data) {
data.indx.r[indx:(indx + n.obs.long[i] - 1)] <- rep(i, n.obs.long[i])
indx <- indx + n.obs.long[i]
}
data.indx.c <- data.indx.r - 1
X.p.all <- matrix(NA, n.obs, max(p.det.long))
indx <- 1
for (i in 1:n.data) {
X.p.all[indx:(indx + nrow(X.p[[i]]) - 1), 1:p.det.long[i]] <- X.p[[i]]
indx <- indx + nrow(X.p[[i]])
}
# Get random effect matrices all set ----------------------------------
if (p.occ.re > 1) {
for (j in 2:p.occ.re) {
X.re[, j] <- X.re[, j] + max(X.re[, j - 1]) + 1
}
}
# Detection REs -------------------
# Need to give a different value for each level across different random
# effects within a given data set and across a given data set.
# Total number of detection random effect observations.
n.obs.re <- sum(sapply(X.p.re, nrow))
curr.max <- 0
for (i in 1:n.data) {
if (p.det.re.by.data[i] > 0) {
for (j in 1:p.det.re.by.data[i]) {
X.p.re[[i]][, j] <- X.p.re[[i]][, j] + curr.max
curr.max <- max(X.p.re[[i]]) + 1
}
}
}
# Combine all detection REs into one group.
X.p.re.all <- matrix(NA, n.obs, max(p.det.re.by.data))
indx <- 1
for (i in 1:n.data) {
if (p.det.re.by.data[i] > 0) {
X.p.re.all[indx:(indx + nrow(X.p.re[[i]]) - 1), 1:p.det.re.by.data[i]] <- X.p.re[[i]]
}
indx <- indx + nrow(X.p[[i]])
}
# Number of random effects for each row of X.p.re.all
alpha.n.re.indx <- apply(X.p.re.all, 1, function(a) sum(!is.na(a)))
# Priors --------------------------------------------------------------
if (missing(priors)) {
priors <- list()
}
names(priors) <- tolower(names(priors))
# Priors --------------------------------------------------------------
if (missing(priors)) {
priors <- list()
}
names(priors) <- tolower(names(priors))
# beta -----------------------
if ("beta.normal" %in% names(priors)) {
if (!is.list(priors$beta.normal) | length(priors$beta.normal) != 2) {
stop("error: beta.normal must be a list of length 2")
}
mu.beta <- priors$beta.normal[[1]]
sigma.beta <- priors$beta.normal[[2]]
if (length(mu.beta) != p.occ & length(mu.beta) != 1) {
if (p.occ == 1) {
stop(paste("error: beta.normal[[1]] must be a vector of length ",
p.occ, " with elements corresponding to betas' mean", sep = ""))
} else {
stop(paste("error: beta.normal[[1]] must be a vector of length ",
p.occ, " or 1 with elements corresponding to betas' mean", sep = ""))
}
}
if (length(sigma.beta) != p.occ & length(sigma.beta) != 1) {
if (p.occ == 1) {
stop(paste("error: beta.normal[[2]] must be a vector of length ",
p.occ, " with elements corresponding to betas' variance", sep = ""))
} else {
stop(paste("error: beta.normal[[2]] must be a vector of length ",
p.occ, " or 1 with elements corresponding to betas' variance", sep = ""))
}
}
if (length(sigma.beta) != p.occ) {
sigma.beta <- rep(sigma.beta, p.occ)
}
if (length(mu.beta) != p.occ) {
mu.beta <- rep(mu.beta, p.occ)
}
Sigma.beta <- sigma.beta * diag(p.occ)
} else {
if (verbose) {
message("No prior specified for beta.normal.\nSetting prior mean to 0 and prior variance to 2.72\n")
}
mu.beta <- rep(0, p.occ)
sigma.beta <- rep(2.72, p.occ)
Sigma.beta <- diag(p.occ) * 2.72
}
# alpha -----------------------
if ("alpha.normal" %in% names(priors)) {
if (!is.list(priors$alpha.normal) | length(priors$alpha.normal) != 2) {
stop("error: alpha.normal must be a list of length 2")
}
mu.alpha <- priors$alpha.normal[[1]]
sigma.alpha <- priors$alpha.normal[[2]]
if (length(mu.alpha) != n.data | !is.list(mu.alpha)) {
stop(paste("error: alpha.normal[[1]] must be a list of length ",
n.data, " with elements corresponding to alphas' mean for each data set", sep = ""))
}
for (q in 1:n.data) {
if (length(mu.alpha[[q]]) != p.det.long[q] & length(mu.alpha[[q]]) != 1) {
if (p.det.long[q] == 1) {
stop(paste("error: prior means for alpha.normal[[1]][[", q, "]] must be a vector of length ",
p.det.long[q], sep = ""))
} else {
stop(paste("error: prior means for alpha.normal[[1]][[", q, "]] must be a vector of length ",
p.det.long[q], "or 1", sep = ""))
}
}
if (length(mu.alpha[[q]]) != p.det.long[q]) {
mu.alpha[[q]] <- rep(mu.alpha[[q]], p.det.long[q])
}
}
mu.alpha <- unlist(mu.alpha)
if (length(sigma.alpha) != n.data | !is.list(sigma.alpha)) {
stop(paste("error: alpha.normal[[2]] must be a list of length ",
n.data, " with elements corresponding to alphas' variance for each data set", sep = ""))
}
for (q in 1:n.data) {
if (length(sigma.alpha[[q]]) != p.det.long[q] & length(sigma.alpha[[q]]) != 1) {
if (p.det.long[q] == 1) {
stop(paste("error: prior variances for alpha.normal[[2]][[", q, "]] must be a vector of length ",
p.det.long[q], sep = ""))
} else {
stop(paste("error: prior variances for alpha.normal[[2]][[", q, "]] must be a vector of length ",
p.det.long[q], " or 1", sep = ""))
}
}
if (length(sigma.alpha[[q]]) != p.det.long[q]) {
sigma.alpha[[q]] <- rep(sigma.alpha[[q]], p.det.long[q])
}
}
sigma.alpha <- unlist(sigma.alpha)
} else {
if (verbose) {
message("No prior specified for alpha.normal.\nSetting prior mean to 0 and prior variance to 2.72\n")
}
mu.alpha <- rep(0, p.det)
sigma.alpha <- rep(2.72, p.det)
}
# sigma.sq.psi --------------------
if (p.occ.re > 0) {
if ("sigma.sq.psi.ig" %in% names(priors)) {
if (!is.list(priors$sigma.sq.psi.ig) | length(priors$sigma.sq.psi.ig) != 2) {
stop("error: sigma.sq.psi.ig must be a list of length 2")
}
sigma.sq.psi.a <- priors$sigma.sq.psi.ig[[1]]
sigma.sq.psi.b <- priors$sigma.sq.psi.ig[[2]]
if (length(sigma.sq.psi.a) != p.occ.re & length(sigma.sq.psi.a) != 1) {
if (p.occ.re == 1) {
stop(paste("error: sigma.sq.psi.ig[[1]] must be a vector of length ",
p.occ.re, " with elements corresponding to sigma.sq.psis' shape", sep = ""))
} else {
stop(paste("error: sigma.sq.psi.ig[[1]] must be a vector of length ",
p.occ.re, " or 1 with elements corresponding to sigma.sq.psis' shape", sep = ""))
}
}
if (length(sigma.sq.psi.b) != p.occ.re & length(sigma.sq.psi.b) != 1) {
if (p.occ.re == 1) {
stop(paste("error: sigma.sq.psi.ig[[2]] must be a vector of length ",
p.occ.re, " with elements corresponding to sigma.sq.psis' scale", sep = ""))
} else {
stop(paste("error: sigma.sq.psi.ig[[2]] must be a vector of length ",
p.occ.re, " or 1with elements corresponding to sigma.sq.psis' scale", sep = ""))
}
}
if (length(sigma.sq.psi.a) != p.occ.re) {
sigma.sq.psi.a <- rep(sigma.sq.psi.a, p.occ.re)
}
if (length(sigma.sq.psi.b) != p.occ.re) {
sigma.sq.psi.b <- rep(sigma.sq.psi.b, p.occ.re)
}
} else {
if (verbose) {
message("No prior specified for sigma.sq.psi.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
}
sigma.sq.psi.a <- rep(0.1, p.occ.re)
sigma.sq.psi.b <- rep(0.1, p.occ.re)
}
} else {
sigma.sq.psi.a <- 0
sigma.sq.psi.b <- 0
}
# sigma.sq.p --------------------
if (p.det.re > 0) {
if ("sigma.sq.p.ig" %in% names(priors)) {
if (!is.list(priors$sigma.sq.p.ig) | length(priors$sigma.sq.p.ig) != 2) {
stop("error: sigma.sq.p.ig must be a list of length 2")
}
sigma.sq.p.a <- priors$sigma.sq.p.ig[[1]]
sigma.sq.p.b <- priors$sigma.sq.p.ig[[2]]
if (length(sigma.sq.p.a) != p.det.re & length(sigma.sq.p.a) != 1) {
if (p.det.re == 1) {
stop(paste("error: sigma.sq.p.ig[[1]] must be a vector of length ",
p.det.re, " with elements corresponding to sigma.sq.ps' shape", sep = ""))
} else {
stop(paste("error: sigma.sq.p.ig[[1]] must be a vector of length ",
p.det.re, " or 1 with elements corresponding to sigma.sq.ps' shape", sep = ""))
}
}
if (length(sigma.sq.p.b) != p.det.re & length(sigma.sq.p.b) != 1) {
if (p.det.re == 1) {
stop(paste("error: sigma.sq.p.ig[[2]] must be a vector of length ",
p.det.re, " with elements corresponding to sigma.sq.ps' scale", sep = ""))
} else {
stop(paste("error: sigma.sq.p.ig[[2]] must be a vector of length ",
p.det.re, " or 1 with elements corresponding to sigma.sq.ps' scale", sep = ""))
}
}
if (length(sigma.sq.p.a) != p.det.re) {
sigma.sq.p.a <- rep(sigma.sq.p.a, p.det.re)
}
if (length(sigma.sq.p.b) != p.det.re) {
sigma.sq.p.b <- rep(sigma.sq.p.b, p.det.re)
}
} else {
if (verbose) {
message("No prior specified for sigma.sq.p.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
}
sigma.sq.p.a <- rep(0.1, p.det.re)
sigma.sq.p.b <- rep(0.1, p.det.re)
}
} else {
sigma.sq.p.a <- 0
sigma.sq.p.b <- 0
}
if (ar1) {
# rho -----------------------------
if ("rho.unif" %in% names(priors)) {
if (!is.vector(priors$rho.unif) | !is.atomic(priors$rho.unif) | length(priors$rho.unif) != 2) {
stop("error: rho.unif must be a vector of length 2 with elements corresponding to rho's lower and upper bounds")
}
rho.a <- priors$rho.unif[1]
rho.b <- priors$rho.unif[2]
} else {
if (verbose) {
message("No prior specified for rho.unif.\nSetting uniform bounds to -1 and 1.\n")
}
rho.a <- -1
rho.b <- 1
}
# sigma.sq.t.t ----------------------
if ("sigma.sq.t.ig" %in% names(priors)) {
if (!is.vector(priors$sigma.sq.t.ig) | !is.atomic(priors$sigma.sq.t.ig) | length(priors$sigma.sq.t.ig) != 2) {
stop("error: sigma.sq.t.ig must be a vector of length 2 with elements corresponding to sigma.sq.t's shape and scale parameters")
}
sigma.sq.t.a <- priors$sigma.sq.t.ig[1]
sigma.sq.t.b <- priors$sigma.sq.t.ig[2]
} else {
if (verbose) {
message("No prior specified for sigma.sq.t.\nUsing an inverse-Gamma prior with the shape parameter set to 2 and scale parameter to 0.5.\n")
}
sigma.sq.t.a <- 2
sigma.sq.t.b <- 0.5
}
} else {
rho.a <- 0
rho.b <- 0
sigma.sq.t.a <- 0
sigma.sq.t.b <- 0
}
# Starting values -----------------------------------------------------
if (missing(inits)) {
inits <- list()
}
names(inits) <- tolower(names(inits))
# z -------------------------------
#ORDER: stored in column-major order as a vector, with values sorted by year, then
# site within year.
z.inits.default <- matrix(0, J, n.years.total)
for (q in 1:n.data) {
for (j in 1:J.long[q]) {
for (t in 1:n.years.by.data[q]) {
if (sum(!is.na(y.big[[q]][j, t, ])) > 0) {
if (z.inits.default[sites[[q]][j], seasons[[q]][t]] == 0) {
z.inits.default[sites[[q]][j], seasons[[q]][t]] <- max(y.big[[q]][j, t, ], na.rm = TRUE)
}
}
}
}
}
if ("z" %in% names(inits)) {
z.inits <- inits$z
if (!is.matrix(z.inits) & !is.data.frame(z.inits)) {
stop(paste("error: initial values for z must be a matrix or data frame with ",
J, " rows and ", n.years.total, " columns.", sep = ""))
}
if (nrow(z.inits) != J | ncol(z.inits) != n.years.total) {
stop(paste("error: initial values for z must be a matrix or data frame with ",
J, " rows and ", n.years.total, " columns.", sep = ""))
}
init.test <- sum(z.inits < z.inits.default, na.rm = TRUE)
if (init.test > 0) {
stop("error: initial values for latent occurrence (z) are invalid. Please re-specify inits$z so initial values are 1 if the species is observed at that site/year combination.")
}
} else {
z.inits <- z.inits.default
if (verbose) {
message("z is not specified in initial values.\nSetting initial values based on observed data\n")
}
}
# beta -----------------------
if ("beta" %in% names(inits)) {
beta.inits <- inits[["beta"]]
if (length(beta.inits) != p.occ & length(beta.inits) != 1) {
if (p.occ == 1) {
stop(paste("error: initial values for beta must be of length ", p.occ,
sep = ""))
} else {
stop(paste("error: initial values for beta must be of length ", p.occ, " or 1",
sep = ""))
}
}
if (length(beta.inits) != p.occ) {
beta.inits <- rep(beta.inits, p.occ)
}
} else {
beta.inits <- rnorm(p.occ, mu.beta, sqrt(sigma.beta))
if (verbose) {
message('beta is not specified in initial values.\nSetting initial values to random values from the prior distribution\n')
}
}
if ("alpha" %in% names(inits)) {
alpha.inits <- inits[["alpha"]]
if (length(alpha.inits) != n.data | !is.list(alpha.inits)) {
stop(paste("error: initial values for alpha must be a list of length ", n.data,
sep = ""))
}
for (q in 1:n.data) {
if (length(alpha.inits[[q]]) != p.det.long[q] & length(alpha.inits[[q]]) != 1) {
if (p.det.long[q] == 1) {
stop(paste("error: initial values for alpha[[", q, "]] must be a vector of length ",
p.det.long[q], sep = ""))
} else {
stop(paste("error: initial values for alpha[[", q, "]] must be a vector of length ",
p.det.long[q], " or 1", sep = ""))
}
}
if (length(alpha.inits[[q]]) != p.det.long[q]) {
alpha.inits[[q]] <- rep(alpha.inits, p.det.long[q])
}
}
alpha.inits <- unlist(alpha.inits)
} else {
if (verbose) {
message("alpha is not specified in initial values.\nSetting initial values to random values from the prior distribution\n")
}
alpha.inits <- rnorm(p.det, mu.alpha, sqrt(sigma.alpha))
}
alpha.indx.r <- unlist(sapply(1:n.data, function(a) rep(a, p.det.long[a])))
alpha.indx.c <- alpha.indx.r - 1
# sigma.sq.psi -------------------
if (p.occ.re > 0) {
if ("sigma.sq.psi" %in% names(inits)) {
sigma.sq.psi.inits <- inits[["sigma.sq.psi"]]
if (length(sigma.sq.psi.inits) != p.occ.re & length(sigma.sq.psi.inits) != 1) {
if (p.occ.re == 1) {
stop(paste("error: initial values for sigma.sq.psi must be of length ", p.occ.re,
sep = ""))
} else {
stop(paste("error: initial values for sigma.sq.psi must be of length ", p.occ.re,
" or 1", sep = ""))
}
}
if (length(sigma.sq.psi.inits) != p.occ.re) {
sigma.sq.psi.inits <- rep(sigma.sq.psi.inits, p.occ.re)
}
} else {
sigma.sq.psi.inits <- runif(p.occ.re, 0.5, 10)
if (verbose) {
message("sigma.sq.psi is not specified in initial values.\nSetting initial values to random values between 0.5 and 10\n")
}
}
beta.star.indx <- rep(0:(p.occ.re - 1), n.occ.re.long)
beta.star.inits <- rnorm(n.occ.re, 0, sqrt(sigma.sq.psi.inits[beta.star.indx + 1]))
} else {
sigma.sq.psi.inits <- 0
beta.star.indx <- 0
beta.star.inits <- 0
}
# sigma.sq.p ------------------
if (p.det.re > 0) {
if ("sigma.sq.p" %in% names(inits)) {
sigma.sq.p.inits <- inits[["sigma.sq.p"]]
if (length(sigma.sq.p.inits) != p.det.re & length(sigma.sq.p.inits) != 1) {
if (p.det.re == 1) {
stop(paste("error: initial values for sigma.sq.p must be of length ", p.det.re,
sep = ""))
} else {
stop(paste("error: initial values for sigma.sq.p must be of length ", p.det.re,
" or 1", sep = ""))
}
}
if (length(sigma.sq.p.inits) != p.det.re) {
sigma.sq.p.inits <- rep(sigma.sq.p.inits, p.det.re)
}
} else {
sigma.sq.p.inits <- runif(p.det.re, 0.5, 10)
if (verbose) {
message("sigma.sq.p is not specified in initial values.\nSetting initial values to random values between 0.5 and 10\n")
}
}
# Keep track of which detection random effect you're on.
alpha.star.indx <- rep(0:(p.det.re - 1), n.det.re.long)
# Index that indicates the column in X.p.re.all
alpha.col.list <- list()
indx <- 1
for (i in 1:n.data) {
if (p.det.re.by.data[i] > 0) {
for (j in 1:p.det.re.by.data[i]) {
if (j > 1) {
alpha.col.list[[i]] <- c(alpha.col.list[[i]], rep(j - 1, n.det.re.long[indx]))
} else {
alpha.col.list[[i]] <- rep(j - 1, n.det.re.long[indx])
}
indx <- indx + 1
}
}
}
alpha.col.indx <- unlist(alpha.col.list)
# Index that indicates the data source the random effect corresponds to.
alpha.star.inits <- rnorm(n.det.re, 0, sqrt(sigma.sq.p.inits[alpha.star.indx + 1]))
} else {
sigma.sq.p.inits <- 0
alpha.star.indx <- 0
alpha.star.inits <- 0
alpha.col.indx <- 0
}
# Should initial values be fixed --
if ("fix" %in% names(inits)) {
fix.inits <- inits[["fix"]]
if ((fix.inits != TRUE) & (fix.inits != FALSE)) {
stop(paste("error: inits$fix must take value TRUE or FALSE"))
}
} else {
fix.inits <- FALSE
}
if (verbose & fix.inits & (n.chains > 1)) {
message("Fixing initial values across all chains\n")
}
if (ar1) {
# rho -----------------------------
if ("rho" %in% names(inits)) {
rho.inits <- inits[["rho"]]
if (length(rho.inits) != 1) {
stop("error: initial values for rho must be of length 1")
}
} else {
rho.inits <- runif(1, rho.a, rho.b)
if (verbose) {
message("rho is not specified in initial values.\nSetting initial value to random value from the prior distribution\n")
}
}
# sigma.sq.t ------------------------
if ("sigma.sq.t" %in% names(inits)) {
sigma.sq.t.inits <- inits[["sigma.sq.t"]]
if (length(sigma.sq.t.inits) != 1) {
stop("error: initial values for sigma.sq.t must be of length 1")
}
} else {
sigma.sq.t.inits <- runif(1, 0.5, 10)
if (verbose) {
message("sigma.sq.t is not specified in initial values.\nSetting initial value to random value between 0.5 and 10\n")
}
}
} else {
rho.inits <- 0
sigma.sq.t.inits <- 0
}
# Get tuning values ---------------------------------------------------
rho.tuning <- 0
sigma.sq.t.tuning <- 0
if (ar1) {
if (missing(tuning)) {
rho.tuning <- 1
} else {
names(tuning) <- tolower(names(tuning))
# rho ---------------------------
if(!"rho" %in% names(tuning)) {
stop("error: rho must be specified in tuning value list")
}
rho.tuning <- tuning$rho
if (length(rho.tuning) != 1) {
stop("error: rho tuning must be a single value")
}
}
}
# Log the tuning values since they are used in the AMCMC.
tuning.c <- log(c(sigma.sq.t.tuning, rho.tuning))
# Set model.deviance to NA for returning when no cross-validation
model.deviance <- NA
curr.chain <- 1
# Set storage for all variables ---------------------------------------
storage.mode(y) <- "double"
storage.mode(z.inits) <- "double"
storage.mode(X.p.all) <- "double"
storage.mode(X) <- "double"
storage.mode(p.det.long) <- 'integer'
storage.mode(n.obs.long) <- 'integer'
storage.mode(J.long) <- 'integer'
consts <- c(J, n.obs, p.occ, p.occ.re, n.occ.re, p.det, p.det.re,
n.det.re, n.years.total, n.data, n.waic)
storage.mode(consts) <- "integer"
storage.mode(beta.inits) <- "double"
storage.mode(alpha.inits) <- "double"
storage.mode(z.long.indx.c) <- "integer"
storage.mode(z.year.indx) <- "integer"
storage.mode(z.dat.indx) <- "integer"
storage.mode(data.indx.c) <- 'integer'
storage.mode(alpha.indx.c) <- 'integer'
storage.mode(waic.n.obs.indx) <- 'integer'
storage.mode(waic.cell.indx) <- 'integer'
storage.mode(mu.beta) <- "double"
storage.mode(Sigma.beta) <- "double"
storage.mode(mu.alpha) <- "double"
storage.mode(sigma.alpha) <- "double"
storage.mode(n.batch) <- "integer"
storage.mode(batch.length) <- "integer"
storage.mode(accept.rate) <- "double"
storage.mode(tuning.c) <- "double"
storage.mode(n.omp.threads) <- "integer"
storage.mode(verbose) <- "integer"
storage.mode(n.report) <- "integer"
storage.mode(n.burn) <- "integer"
storage.mode(n.thin) <- "integer"
chain.info <- c(curr.chain, n.chains)
storage.mode(chain.info) <- "integer"
n.post.samples <- length(seq(from = n.burn + 1,
to = n.samples,
by = as.integer(n.thin)))
storage.mode(n.post.samples) <- "integer"
# For detection random effects
storage.mode(X.p.re.all) <- "integer"
storage.mode(p.det.re.by.data) <- 'integer'
alpha.level.indx <- sort(unique(c(X.p.re.all)))
storage.mode(alpha.level.indx) <- "integer"
storage.mode(n.det.re.long) <- "integer"
storage.mode(sigma.sq.p.inits) <- "double"
storage.mode(sigma.sq.p.a) <- "double"
storage.mode(sigma.sq.p.b) <- "double"
storage.mode(alpha.star.inits) <- "double"
storage.mode(alpha.star.indx) <- "integer"
storage.mode(alpha.n.re.indx) <- 'integer'
storage.mode(alpha.col.indx) <- 'integer'
# For occurrence random effects
storage.mode(X.re) <- "integer"
beta.level.indx <- sort(unique(c(X.re)))
storage.mode(beta.level.indx) <- "integer"
storage.mode(sigma.sq.psi.inits) <- "double"
storage.mode(sigma.sq.psi.a) <- "double"
storage.mode(sigma.sq.psi.b) <- "double"
storage.mode(n.occ.re.long) <- "integer"
storage.mode(beta.star.inits) <- "double"
storage.mode(beta.star.indx) <- "integer"
# AR1 parameters
storage.mode(ar1) <- "integer"
ar1.vals <- c(rho.a, rho.b, sigma.sq.t.a, sigma.sq.t.b,
rho.inits, sigma.sq.t.inits)
storage.mode(ar1.vals) <- "double"
# Run the model ---------------------------------------------------------
out <- list()
out.tmp <- list()
for (i in 1:n.chains) {
# Change initial values if i > 1
if ((i > 1) & (!fix.inits)) {
beta.inits <- rnorm(p.occ, mu.beta, sqrt(sigma.beta))
alpha.inits <- rnorm(p.det, mu.alpha, sqrt(sigma.alpha))
if (p.det.re > 0) {
sigma.sq.p.inits <- runif(p.det.re, 0.5, 10)
alpha.star.inits <- rnorm(n.det.re, 0, sqrt(sigma.sq.p.inits[alpha.star.indx + 1]))
}
if (p.occ.re > 0) {
sigma.sq.psi.inits <- runif(p.occ.re, 0.5, 10)
beta.star.inits <- rnorm(n.occ.re, 0, sqrt(sigma.sq.psi.inits[beta.star.indx + 1]))
}
if (ar1) {
ar1.vals[5] <- runif(1, rho.a, rho.b)
ar1.vals[6] <- runif(1, 0.5, 10)
}
}
storage.mode(chain.info) <- "integer"
out.tmp[[i]] <- .Call("tIntPGOcc", y, X, X.p.all, X.re, X.p.re.all,
consts, p.det.long, J.long, n.obs.long,
n.occ.re.long, n.det.re.long,
beta.inits, alpha.inits, sigma.sq.psi.inits,
sigma.sq.p.inits, beta.star.inits, alpha.star.inits,
z.inits, z.long.indx.c, data.indx.c, alpha.indx.c,
z.year.indx, z.dat.indx, beta.star.indx, beta.level.indx,
alpha.star.indx, alpha.level.indx, alpha.n.re.indx,
alpha.col.indx, mu.beta, Sigma.beta, mu.alpha, sigma.alpha,
sigma.sq.psi.a, sigma.sq.psi.b, sigma.sq.p.a, sigma.sq.p.b,
ar1, ar1.vals, tuning.c, n.batch, batch.length, accept.rate,
n.omp.threads, verbose, n.report,
n.burn, n.thin, n.post.samples, chain.info,
waic.n.obs.indx, waic.cell.indx)
chain.info[1] <- chain.info[1] + 1
}
# Calculate R-Hat ---------------
out$rhat <- list()
if (n.chains > 1) {
out$rhat$beta <- gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$beta.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2]
out$rhat$alpha <- gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$alpha.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2]
if (p.det.re > 0) {
out$rhat$sigma.sq.p <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$sigma.sq.p.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
}
if (p.occ.re > 0) {
out$rhat$sigma.sq.psi <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$sigma.sq.psi.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
}
if (ar1) {
out$rhat$theta <- gelman.diag(mcmc.list(lapply(out.tmp, function(a) mcmc(t(a$theta.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2]
}
} else {
out$rhat$beta <- rep(NA, p.occ)
out$rhat$alpha <- rep(NA, p.det)
if (p.det.re > 0) {
out$rhat$sigma.sq.p <- rep(NA, p.det.re)
}
if (p.occ.re > 0) {
out$rhat$sigma.sq.psi <- rep(NA, p.occ.re)
}
if (ar1) {
out$rhat$theta <- rep(NA, 2)
}
}
# Put everything into an MCMC objects
out$beta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$beta.samples))))
colnames(out$beta.samples) <- x.names
out$alpha.samples <- mcmc(do.call(rbind,
lapply(out.tmp, function(a) t(a$alpha.samples))))
colnames(out$alpha.samples) <- x.p.names
# Return other stuff as well.
out$X <- array(X, dim = c(J, n.years.total, p.occ))
dimnames(out$X)[[3]] <- x.names
out$X.re <- array(X.re, dim = c(J, n.years.total, p.occ.re))
dimnames(out$X.re)[[3]] <- x.re.names
out$z.samples <- do.call(abind, lapply(out.tmp, function(a) array(a$z.samples,
dim = c(J, n.years.total, n.post.samples))))
out$z.samples <- aperm(out$z.samples, c(3, 1, 2))
out$psi.samples <- do.call(abind, lapply(out.tmp, function(a) array(a$psi.samples,
dim = c(J, n.years.total, n.post.samples))))
out$psi.samples <- aperm(out$psi.samples, c(3, 1, 2))
# Likelihood samples for WAIC calculation.
out$like.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$like.samples))))
if (ar1) {
out$theta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$theta.samples))))
colnames(out$theta.samples) <- c('sigma.sq.t', 'rho')
out$eta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$eta.samples))))
}
# p.samples is returned as a list, where each element
# corresponds to a different data set.
out$p.samples <- do.call(rbind, lapply(out.tmp, function(a) a$p.samples))
tmp <- list()
indx <- 1
for (q in 1:n.data) {
tmp[[q]] <- array(NA, dim = c(J.long[q] * K.long.max[q] * n.years.by.data[q],
n.post.samples * n.chains))
tmp[[q]][names.long[[q]], ] <- out$p.samples[indx:(indx + n.obs.long[q] - 1), ]
tmp[[q]] <- array(tmp[[q]], dim = c(J.long[q], n.years.by.data[q],
K.long.max[q], n.post.samples * n.chains))
tmp[[q]] <- aperm(tmp[[q]], c(4, 1, 2, 3))
indx <- indx + n.obs.long[q]
}
out$p.samples <- tmp
out$y <- y.big
out$X.p <- X.p.orig
out$X.p.re <- X.p.re
if (p.occ.re > 0) {
out$sigma.sq.psi.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$sigma.sq.psi.samples))))
colnames(out$sigma.sq.psi.samples) <- x.re.names
out$beta.star.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$beta.star.samples))))
tmp.names <- unlist(re.level.names)
beta.star.names <- paste(rep(x.re.names, n.occ.re.long), tmp.names, sep = '-')
colnames(out$beta.star.samples) <- beta.star.names
out$re.level.names <- re.level.names
}
if (p.det.re > 0) {
out$sigma.sq.p.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$sigma.sq.p.samples))))
colnames(out$sigma.sq.p.samples) <- x.p.re.names
out$alpha.star.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$alpha.star.samples))))
tmp.names <- unlist(p.re.level.names)
alpha.star.names <- paste(rep(x.p.re.names, n.det.re.long), tmp.names, sep = '-')
colnames(out$alpha.star.samples) <- alpha.star.names
out$p.re.level.names <- p.re.level.names
}
# Calculate effective sample sizes
out$ESS <- list()
out$ESS$beta <- effectiveSize(out$beta.samples)
out$ESS$alpha <- effectiveSize(out$alpha.samples)
if (p.det.re > 0) {
out$ESS$sigma.sq.p <- effectiveSize(out$sigma.sq.p.samples)
}
if (p.occ.re > 0) {
out$ESS$sigma.sq.psi <- effectiveSize(out$sigma.sq.psi.samples)
}
if (ar1 > 0) {
out$ESS$theta <- effectiveSize(out$theta.samples)
}
out$sites <- sites
out$seasons <- seasons
out$call <- cl
out$n.samples <- n.samples
out$n.post <- n.post.samples
out$n.thin <- n.thin
out$n.burn <- n.burn
out$n.chains <- n.chains
out$occ.formula <- occ.formula
out$det.formula <- det.formula
out$ar1 <- as.logical(ar1)
if (p.det.re > 0) {
out$pRE <- TRUE
} else {
out$pRE <- FALSE
}
if (p.occ.re > 0) {
out$psiRE <- TRUE
} else {
out$psiRE <- FALSE
}
out$pRELong <- ifelse(p.det.re.by.data > 0, TRUE, FALSE)
class(out) <- "tIntPGOcc"
out$run.time <- proc.time() - ptm
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.