View source: R/ml_feature_count_vectorizer.R
ft_count_vectorizer | R Documentation |
Extracts a vocabulary from document collections.
ft_count_vectorizer(
x,
input_col = NULL,
output_col = NULL,
binary = FALSE,
min_df = 1,
min_tf = 1,
vocab_size = 2^18,
uid = random_string("count_vectorizer_"),
...
)
ml_vocabulary(model)
x |
A |
input_col |
The name of the input column. |
output_col |
The name of the output column. |
binary |
Binary toggle to control the output vector values.
If |
min_df |
Specifies the minimum number of different documents a term must appear in to be included in the vocabulary. If this is an integer greater than or equal to 1, this specifies the number of documents the term must appear in; if this is a double in [0,1), then this specifies the fraction of documents. Default: 1. |
min_tf |
Filter to ignore rare words in a document. For each document, terms with frequency/count less than the given threshold are ignored. If this is an integer greater than or equal to 1, then this specifies a count (of times the term must appear in the document); if this is a double in [0,1), then this specifies a fraction (out of the document's token count). Default: 1. |
vocab_size |
Build a vocabulary that only considers the top
|
uid |
A character string used to uniquely identify the feature transformer. |
... |
Optional arguments; currently unused. |
model |
A |
In the case where x
is a tbl_spark
, the estimator
fits against x
to obtain a transformer, returning a tbl_spark
.
The object returned depends on the class of x
. If it is a
spark_connection
, the function returns a ml_estimator
or a
ml_estimator
object. If it is a ml_pipeline
, it will return
a pipeline with the transformer or estimator appended to it. If a
tbl_spark
, it will return a tbl_spark
with the transformation
applied to it.
ml_vocabulary()
returns a vector of vocabulary built.
Other feature transformers:
ft_binarizer()
,
ft_bucketizer()
,
ft_chisq_selector()
,
ft_dct()
,
ft_elementwise_product()
,
ft_feature_hasher()
,
ft_hashing_tf()
,
ft_idf()
,
ft_imputer()
,
ft_index_to_string()
,
ft_interaction()
,
ft_lsh
,
ft_max_abs_scaler()
,
ft_min_max_scaler()
,
ft_ngram()
,
ft_normalizer()
,
ft_one_hot_encoder()
,
ft_one_hot_encoder_estimator()
,
ft_pca()
,
ft_polynomial_expansion()
,
ft_quantile_discretizer()
,
ft_r_formula()
,
ft_regex_tokenizer()
,
ft_robust_scaler()
,
ft_sql_transformer()
,
ft_standard_scaler()
,
ft_stop_words_remover()
,
ft_string_indexer()
,
ft_tokenizer()
,
ft_vector_assembler()
,
ft_vector_indexer()
,
ft_vector_slicer()
,
ft_word2vec()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.