View source: R/ml_feature_imputer.R
ft_imputer | R Documentation |
Imputation estimator for completing missing values, either using the mean or the median of the columns in which the missing values are located. The input columns should be of numeric type. This function requires Spark 2.2.0+.
ft_imputer(
x,
input_cols = NULL,
output_cols = NULL,
missing_value = NULL,
strategy = "mean",
uid = random_string("imputer_"),
...
)
x |
A |
input_cols |
The names of the input columns |
output_cols |
The names of the output columns. |
missing_value |
The placeholder for the missing values. All occurrences of
|
strategy |
The imputation strategy. Currently only "mean" and "median" are supported. If "mean", then replace missing values using the mean value of the feature. If "median", then replace missing values using the approximate median value of the feature. Default: mean |
uid |
A character string used to uniquely identify the feature transformer. |
... |
Optional arguments; currently unused. |
In the case where x
is a tbl_spark
, the estimator
fits against x
to obtain a transformer, returning a tbl_spark
.
The object returned depends on the class of x
. If it is a
spark_connection
, the function returns a ml_estimator
or a
ml_estimator
object. If it is a ml_pipeline
, it will return
a pipeline with the transformer or estimator appended to it. If a
tbl_spark
, it will return a tbl_spark
with the transformation
applied to it.
Other feature transformers:
ft_binarizer()
,
ft_bucketizer()
,
ft_chisq_selector()
,
ft_count_vectorizer()
,
ft_dct()
,
ft_elementwise_product()
,
ft_feature_hasher()
,
ft_hashing_tf()
,
ft_idf()
,
ft_index_to_string()
,
ft_interaction()
,
ft_lsh
,
ft_max_abs_scaler()
,
ft_min_max_scaler()
,
ft_ngram()
,
ft_normalizer()
,
ft_one_hot_encoder()
,
ft_one_hot_encoder_estimator()
,
ft_pca()
,
ft_polynomial_expansion()
,
ft_quantile_discretizer()
,
ft_r_formula()
,
ft_regex_tokenizer()
,
ft_robust_scaler()
,
ft_sql_transformer()
,
ft_standard_scaler()
,
ft_stop_words_remover()
,
ft_string_indexer()
,
ft_tokenizer()
,
ft_vector_assembler()
,
ft_vector_indexer()
,
ft_vector_slicer()
,
ft_word2vec()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.