View source: R/ml_feature_hashing_tf.R
| ft_hashing_tf | R Documentation |
Maps a sequence of terms to their term frequencies using the hashing trick.
ft_hashing_tf(
x,
input_col = NULL,
output_col = NULL,
binary = FALSE,
num_features = 2^18,
uid = random_string("hashing_tf_"),
...
)
x |
A |
input_col |
The name of the input column. |
output_col |
The name of the output column. |
binary |
Binary toggle to control term frequency counts.
If true, all non-zero counts are set to 1. This is useful for discrete
probabilistic models that model binary events rather than integer
counts. (default = |
num_features |
Number of features. Should be greater than 0. (default = |
uid |
A character string used to uniquely identify the feature transformer. |
... |
Optional arguments; currently unused. |
The object returned depends on the class of x. If it is a
spark_connection, the function returns a ml_estimator or a
ml_estimator object. If it is a ml_pipeline, it will return
a pipeline with the transformer or estimator appended to it. If a
tbl_spark, it will return a tbl_spark with the transformation
applied to it.
Other feature transformers:
ft_binarizer(),
ft_bucketizer(),
ft_chisq_selector(),
ft_count_vectorizer(),
ft_dct(),
ft_elementwise_product(),
ft_feature_hasher(),
ft_idf(),
ft_imputer(),
ft_index_to_string(),
ft_interaction(),
ft_lsh,
ft_max_abs_scaler(),
ft_min_max_scaler(),
ft_ngram(),
ft_normalizer(),
ft_one_hot_encoder(),
ft_one_hot_encoder_estimator(),
ft_pca(),
ft_polynomial_expansion(),
ft_quantile_discretizer(),
ft_r_formula(),
ft_regex_tokenizer(),
ft_robust_scaler(),
ft_sql_transformer(),
ft_standard_scaler(),
ft_stop_words_remover(),
ft_string_indexer(),
ft_tokenizer(),
ft_vector_assembler(),
ft_vector_indexer(),
ft_vector_slicer(),
ft_word2vec()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.