ft_polynomial_expansion: Feature Transformation - PolynomialExpansion (Transformer)

View source: R/ml_feature_polynomial_expansion.R

ft_polynomial_expansionR Documentation

Feature Transformation – PolynomialExpansion (Transformer)

Description

Perform feature expansion in a polynomial space. E.g. take a 2-variable feature vector as an example: (x, y), if we want to expand it with degree 2, then we get (x, x * x, y, x * y, y * y).

Usage

ft_polynomial_expansion(
  x,
  input_col = NULL,
  output_col = NULL,
  degree = 2,
  uid = random_string("polynomial_expansion_"),
  ...
)

Arguments

x

A spark_connection, ml_pipeline, or a tbl_spark.

input_col

The name of the input column.

output_col

The name of the output column.

degree

The polynomial degree to expand, which should be greater than equal to 1. A value of 1 means no expansion. Default: 2

uid

A character string used to uniquely identify the feature transformer.

...

Optional arguments; currently unused.

Value

The object returned depends on the class of x. If it is a spark_connection, the function returns a ml_estimator or a ml_estimator object. If it is a ml_pipeline, it will return a pipeline with the transformer or estimator appended to it. If a tbl_spark, it will return a tbl_spark with the transformation applied to it.

See Also

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(), ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(), ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder(), ft_one_hot_encoder_estimator(), ft_pca(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(), ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()


sparklyr documentation built on May 29, 2024, 2:58 a.m.