R/quadclass.R

Defines functions unitname.quad Window.quad plot.quad union.quad equalpairs.quad equalsfun.quad equals.quad is.data is.multitype.quad is.marked.quad marks.quad n.quad param.quad w.quad coords.quad y.quad x.quad is.quad quad

Documented in coords.quad equalpairs.quad equalsfun.quad equals.quad is.data is.marked.quad is.multitype.quad is.quad marks.quad n.quad param.quad plot.quad quad union.quad unitname.quad Window.quad w.quad x.quad y.quad

#
#	quadclass.S
#
#	Class 'quad' to define quadrature schemes
#	in (rectangular) windows in two dimensions.
#
#	$Revision: 4.29 $	$Date: 2020/11/18 03:07:14 $
#
# An object of class 'quad' contains the following entries:
#
#	$data:	an object of class 'ppp'
#		defining the OBSERVATION window, 
#		giving the locations (& marks) of the data points.
#
#	$dummy:	object of class 'ppp'
#		defining the QUADRATURE window, 
#		giving the locations (& marks) of the dummy points.
#	
#	$w: 	vector giving the nonnegative weights for the
#		data and dummy points (data first, followed by dummy)
#
#		w may also have an attribute attr(w, "zeroes")
#               equivalent to (w == 0). If this is absent
#               then all points are known to have positive weights.
#
#       $param:
#               parameters that were used to compute the weights
#               and possibly to create the dummy points (see below).
#              
#       The combined (data+dummy) vectors of x, y coordinates of the points, 
#       and their weights, are extracted using standard functions 
#       x.quad(), y.quad(), w.quad() etc.
#
# ----------------------------------------------------------------------
#  Note about parameters:
#
#       If the quadrature scheme was created by quadscheme(),
#       then $param contains
#
#           $param$weight
#                list containing the values of all parameters
#                actually used to compute the weights.
#
#           $param$dummy
#                list containing the values of all parameters
#                actually used to construct the dummy pattern
#                via default.dummy();
#                or NULL if the dummy pattern was provided externally
#
#           $param$sourceid
#                vector mapping the quadrature points to the
#                original data and dummy points.
#
#   If you constructed the quadrature scheme manually, this
#   structure may not be present.
#
#-------------------------------------------------------------

quad <- function(data, dummy, w, param=NULL) {
  
  data <- as.ppp(data)
  dummy <- as.ppp(dummy)

  n <- data$n + dummy$n
	
  if(missing(w))
    w <- rep.int(1, n)
  else {
    w <- as.vector(w)
    if(length(w) != n)
      stop("length of weights vector w is not equal to total number of points")
  }

  if(is.null(attr(w, "zeroes")) && any( w == 0))
	attr(w, "zeroes") <- (w == 0)

  Q <- list(data=data, dummy=dummy, w=w, param=param)
  class(Q) <- "quad"

  invisible(Q)
}

is.quad <- function(x) {
  inherits(x, "quad")
}

# ------------------ extractor functions ----------------------

x.quad <- function(Q) {
  verifyclass(Q, "quad")
  c(Q$data$x, Q$dummy$x)
}

y.quad <- function(Q) {
  verifyclass(Q, "quad")
  c(Q$data$y, Q$dummy$y)
}

coords.quad <- function(x, ...) {
  data.frame(x=x.quad(x),
             y=y.quad(x))
}

w.quad <- function(Q) {
  verifyclass(Q, "quad")
  Q$w
}

param.quad <- function(Q) {
  verifyclass(Q, "quad")
  Q$param
}
 
n.quad <- function(Q) {
  verifyclass(Q, "quad")
  Q$data$n + Q$dummy$n
}

marks.quad <- function(x, dfok=FALSE, ...) {
  verifyclass(x, "quad")
  dat <- x$data
  dum <- x$dummy
  if(dfok) warning("ignored dfok = TRUE; not implemented")
  mdat <- marks(dat, dfok=FALSE, ...)
  mdum <- marks(dum, dfok=FALSE, ...)
  if(is.null(mdat) && is.null(mdum))
    return(NULL)
  if(is.null(mdat))
    mdat <- rep.int(NA_integer_, dat$n)
  if(is.null(mdum))
    mdum <- rep.int(NA_integer_, dum$n)
  if(is.factor(mdat) && is.factor(mdum)) {
    mall <- cat.factor(mdat, mdum)
  } else mall <- c(mdat, mdum)
  return(mall)
}

is.marked.quad <- function(X, na.action="warn", ...) {
  marx <- marks(X, ...)
  if(is.null(marx))
    return(FALSE)
  if(anyNA(marx))
    switch(na.action,
           warn = {
             warning(paste("some mark values are NA in the point pattern",
                           short.deparse(substitute(X))))
           },
           fatal = {
             return(FALSE)
           },
           ignore = {}
           )
  return(TRUE)
}

is.multitype.quad <- function(X, na.action="warn", ...) {
  marx <- marks(X, ...)
  if(is.null(marx))
    return(FALSE)
  if(anyNA(marx))
    switch(na.action,
           warn = {
             warning(paste("some mark values are NA in the point pattern",
                           short.deparse(substitute(X))))
           },
           fatal = {
             return(FALSE)
           },
           ignore = {}
           )
  return(!is.data.frame(marx) && is.factor(marx))
}

is.data <- function(Q) {
  verifyclass(Q, "quad")
  return(c(rep.int(TRUE, Q$data$n),
	   rep.int(FALSE, Q$dummy$n)))
}

equals.quad <- function(Q) {
    # return matrix E such that E[i,j] = (X[i] == U[j])
    # where X = Q$data and U = union.quad(Q)
    n <- Q$data$n
    m <- Q$dummy$n
    E <- matrix(FALSE, nrow=n, ncol=n+m)
    diag(E) <- TRUE
    E
}

equalsfun.quad <- function(Q) {
  stopifnot(inherits(Q, "quad"))
  return(function(i,j) { i == j })
}

equalpairs.quad <- function(Q) {
  # return two-column matrix E such that
  #     X[E[i,1]] == U[E[i,2]] for all i
  # where X = Q$data and U = union.quad(Q)
  n <- Q$data$n
  return(matrix(rep.int(seq_len(n),2), ncol=2))
}
      
union.quad <- function(Q) {
  verifyclass(Q, "quad")
  ppp(x= c(Q$data$x, Q$dummy$x),
      y= c(Q$data$y, Q$dummy$y),
      window=Q$dummy$window,
      marks=marks.quad(Q),
      check=FALSE)
}
	
#
#   Plot a quadrature scheme
#
#
plot.quad <- function(x, ..., main, add=FALSE, dum=list(), tiles=FALSE) {
  if(missing(main) || is.null(main)) 
    main <- short.deparse(substitute(x))
  verifyclass(x, "quad")
  data <- x$data
  dummy <- x$dummy
  # determine plot parameters for dummy points
  dum <- resolve.defaults(dum, list(pch=".", add=TRUE))
  tt <- NULL
  if(tiles) {
    # show tiles that determined the weights
    wp <- x$param$weight
    tt <- NULL
    if(is.null(wp) || is.null(wp$method)) {
      warning("Tile information is not available")
    } else {
      switch(wp$method,
             grid = {
               ntile <- wp$ntile
               tt <- quadrats(as.owin(x), ntile[1], ntile[2])
             },
             dirichlet = {
               U <- union.quad(x)
               if(wp$exact) {
                 tt <- dirichlet(U)
               } else {
                 win <- as.mask(as.owin(U))
                 tileid <- im(exactdt(U)$i,
                              win$xcol, win$yrow,
                              win$xrange, win$yrange)
                 tt <- tess(image=tileid[win, drop=FALSE])
               }
             },
             warning("Unrecognised 'method' for tile weights")
             )
    }
  }
  pixeltiles <- !is.null(tt) && tt$type == "image"
  tileargs <- resolve.defaults(list(x=quote(tt), main=main, add=add),
                               list(...),
                               if(!pixeltiles) list(col="grey") else NULL)
  if(!is.marked(data)) {
    if(!is.null(tt)) {
      do.call(plot, tileargs)
      add <- TRUE
    }
    plot(data, main=main, add=add, ...)
    do.call(plot, append(list(x=dummy), dum))
  } else if(is.multitype(data) && !add) {
    oldpar <- par(ask = interactive() &&
                  (.Device %in% c("X11", "GTK", "windows", "Macintosh")))
    on.exit(par(oldpar))
    data.marks <- marks(data)
    dummy.marks <- marks(dummy)
    types <- levels(data.marks)
    for(k in types) {
      add <- FALSE
      if(!is.null(tt)) {
        do.call(plot, tileargs)
        add <- TRUE
      }
      maink <- paste(main, "\n mark = ", k, sep="")
      plot(unmark(data[data.marks == k]), main=maink, add=add, ...)
      do.call(plot, append(list(x=unmark(dummy[dummy.marks == k])),
                             dum))
    }
  } else {
    if(!is.null(tt)) {
      do.call(plot, tileargs)
      add <- TRUE
    }
    plot(data, ..., main=main, add=add)
    do.call(plot, append(list(x=dummy), dum))
  }
  invisible(NULL)
}

# subset operator

"[.quad" <- function(x, ...) {
  U <- union.quad(x)
  Z <- is.data(x)
  w <- w.quad(x)
  # determine serial numbers of points to be included
  V <- U %mark% seq_len(U$n)
  i <- marks(V[...])
  # extract corresponding subsets of vectors
  Z <- Z[i]
  w <- w[i]
  # take subset of points, using any type of subset index
  U <- U[...]
  # stick together
  quad(U[Z], U[!Z], w)
}

domain.quad <- Window.quad <- function(X, ...) { as.owin(X) }

"Window<-.quad" <- function(X, ..., value) {
  verifyclass(value, "owin")
  return(X[value])
}

unitname.quad <- function(x) {
  return(unitname(x$data))
}

"unitname<-.quad" <- function(x, value) {
  unitname(x$data) <- value
  unitname(x$dummy) <- value
  return(x)
}

Try the spatstat.geom package in your browser

Any scripts or data that you put into this service are public.

spatstat.geom documentation built on Sept. 18, 2024, 9:08 a.m.