R/linearKmulti.R

Defines functions DoCountCrossEnds linearKmultiEngine linearKmulti.inhom linearKcross.inhom linearKdot.inhom linearKmulti linearKcross linearKdot

Documented in DoCountCrossEnds linearKcross linearKcross.inhom linearKdot linearKdot.inhom linearKmulti linearKmultiEngine linearKmulti.inhom

#
# linearKmulti
#
# $Revision: 1.22 $ $Date: 2023/02/25 03:39:27 $
#
# K functions for multitype point pattern on linear network
#
#

linearKdot <- function(X, i, r=NULL, ..., correction="Ang") {
  if(!is.multitype(X, dfok=FALSE)) 
	stop("Point pattern must be multitype")
  marx <- marks(X)
  lev <- levels(marx)
  if(missing(i)) i <- lev[1L] else
    if(!(i %in% lev)) stop(paste("i = ", i , "is not a valid mark"))  
  I <- (marx == i)
  J <- rep(TRUE, npoints(X))  # i.e. all points
  result <- linearKmulti(X, I, J,
                         r=r, correction=correction, ...)
  correction <- attr(result, "correction")
  type <- if(correction == "Ang") "L" else "net"
  result <- rebadge.as.dotfun(result, "K", type, i)
  return(result)
}

linearKcross <- function(X, i, j, r=NULL, ..., correction="Ang") {
  if(!is.multitype(X, dfok=FALSE)) 
	stop("Point pattern must be multitype")
  marx <- marks(X)
  lev <- levels(marx)
  if(missing(i)) i <- lev[1L] else
    if(!(i %in% lev)) stop(paste("i = ", i , "is not a valid mark"))
  if(missing(j)) j <- lev[2L] else
    if(!(j %in% lev)) stop(paste("j = ", j , "is not a valid mark"))
  #
  if(i == j) {
    result <- linearK(X[marx == i], r=r, correction=correction, ...)
  } else {
    I <- (marx == i)
    J <- (marx == j)
    result <- linearKmulti(X, I, J, r=r, correction=correction, ...)
  }
  # rebrand
  correction <- attr(result, "correction")
  type <- if(correction == "Ang") "L" else "net"
  result <- rebadge.as.crossfun(result, "K", type, i, j)
  return(result)
}

linearKmulti <- function(X, I, J, r=NULL, ..., correction="Ang") {
  stopifnot(inherits(X, "lpp"))
  correction <- pickoption("correction", correction,
                           c(none="none",
                             Ang="Ang",
                             best="Ang"),
                           multi=FALSE)
  
  # extract info about pattern
  np <- npoints(X)
  lengthL <- volume(domain(X))
  # validate I, J
  if(!is.logical(I) || !is.logical(J))
    stop("I and J must be logical vectors")
  if(length(I) != np || length(J) != np)
    stop(paste("The length of I and J must equal",
               "the number of points in the pattern"))
	
  if(!any(I)) stop("no points satisfy I")
#  if(!any(J)) stop("no points satisfy J")
		
  nI <- sum(I)
  nJ <- sum(J)
  nIandJ <- sum(I & J)
#  lambdaI <- nI/lengthL
#  lambdaJ <- nJ/lengthL
  # compute K
  samplesize <- npairs <- (nI * nJ - nIandJ)
  denom <- npairs/lengthL
  K <- linearKmultiEngine(X, I, J, r=r, denom=denom,
                          correction=correction, ..., samplesize=samplesize)
  # set appropriate y axis label
  correction <- attr(K, "correction")
  type <- if(correction == "Ang") "L" else "net"
  K <- rebadge.as.crossfun(K, "K", type, "I", "J")
  attr(K, "correction") <- correction
  return(K)
}

# ................ inhomogeneous ............................

linearKdot.inhom <- function(X, i, lambdaI=NULL, lambdadot=NULL,
                             r=NULL, ..., correction="Ang", normalise=TRUE,
                             sigma=NULL) {
  if(!is.multitype(X, dfok=FALSE)) 
	stop("Point pattern must be multitype")
  marx <- marks(X)
  lev <- levels(marx)
  if(missing(i)) i <- lev[1L] else
    if(!(i %in% lev)) stop(paste("i = ", i , "is not a valid mark"))  
  I <- (marx == i)
  J <- rep(TRUE, npoints(X))  # i.e. all points
  # compute
  result <- linearKmulti.inhom(X, I, J, lambdaI, lambdadot, 
                               r=r, correction=correction, normalise=normalise,
                               sigma=sigma,
                               ...)
  ## relabel
  correction <- attr(result, "correction")
  type <- if(correction == "Ang") "L, inhom" else "net, inhom"
  result <- rebadge.as.dotfun(result, "K", type, i)
  attr(result, "correction") <- correction
  return(result)
}

linearKcross.inhom <- function(X, i, j, lambdaI=NULL, lambdaJ=NULL,
                               r=NULL, ...,
                               correction="Ang", normalise=TRUE,
                               sigma=NULL) {
  if(!is.multitype(X, dfok=FALSE)) 
	stop("Point pattern must be multitype")
  marx <- marks(X)
  lev <- levels(marx)
  if(missing(i)) i <- lev[1L] else
    if(!(i %in% lev)) stop(paste("i = ", i , "is not a valid mark"))
  if(missing(j)) j <- lev[2L] else
    if(!(j %in% lev)) stop(paste("j = ", j , "is not a valid mark"))
  #
  if(i == j) {
    I <- (marx == i)
    result <- linearKinhom(X[I], lambda=lambdaI, r=r,
                           correction=correction, normalise=normalise,
                           sigma=sigma, ...)
  } else {
    I <- (marx == i)
    J <- (marx == j)
    result <- linearKmulti.inhom(X, I, J, lambdaI, lambdaJ,
                                 r=r, correction=correction,
                                 normalise=normalise, sigma=sigma, ...)
  }
  # rebrand
  correction <- attr(result, "correction")
  type <- if(correction == "Ang") "L, inhom" else "net, inhom"
  result <- rebadge.as.crossfun(result, "K", type, i, j)
  attr(result, "correction") <- correction
  return(result)
}

linearKmulti.inhom <- function(X, I, J, lambdaI=NULL, lambdaJ=NULL,
                               r=NULL, ...,
                               correction="Ang", normalise=TRUE, sigma=NULL) {
  stopifnot(inherits(X, "lpp"))
  correction <- pickoption("correction", correction,
                           c(none="none",
                             Ang="Ang",
                             best="Ang"),
                           multi=FALSE)
  
  # extract info about pattern
  np <- npoints(X)
  lengthL <- volume(domain(X))
  #
  # validate I, J
  if(!is.logical(I) || !is.logical(J))
    stop("I and J must be logical vectors")
  if(length(I) != np || length(J) != np)
    stop(paste("The length of I and J must equal",
               "the number of points in the pattern"))
	
  if(!any(I)) stop("no points satisfy I")

  # validate lambda vectors
  lambdaI <- resolve.lambda.lpp(X, lambdaI, subset=I, ..., sigma=sigma)
  lambdaJ <- resolve.lambda.lpp(X, lambdaJ, subset=J, ..., sigma=sigma)

  # compute K
  weightsIJ <- outer(1/lambdaI, 1/lambdaJ, "*")
  denom <- if(!normalise) lengthL else sum(1/lambdaI) 
  K <- linearKmultiEngine(X, I, J, r=r,
                          reweight=weightsIJ, denom=denom,
                          correction=correction, ...)
  # set appropriate y axis label
  correction <- attr(K, "correction")
  type <- if(correction == "Ang") "L, inhom" else "net, inhom"
  K <- rebadge.as.crossfun(K, "K", type, "I", "J")
  # set markers for 'envelope'
  attr(K, "dangerous") <- union(attr(lambdaI, "dangerous"),
                                attr(lambdaJ, "dangerous"))
  attr(K, "correction") <- correction
  return(K)
}

# .............. internal ...............................

linearKmultiEngine <- function(X, I, J, ..., r=NULL, reweight=NULL,
                               denom=1, samplesize=NULL, 
                               correction="Ang", showworking=FALSE) {
  # ensure distance information is present
  X <- as.lpp(X, sparse=FALSE)
  # extract info about pattern
  np <- npoints(X)
  # extract linear network
  L <- domain(X)
  W <- Window(L)
  # determine r values
  rmaxdefault <- 0.98 * boundingradius(L)
  breaks <- handle.r.b.args(r, NULL, W, rmaxdefault=rmaxdefault)
  r <- breaks$r
  rmax <- breaks$max
  #
  if(correction == "Ang") {
    fname <- c("K", "list(L, I, J)")
    ylab <- quote(K[L,I,J](r))
  } else {
    fname <- c("K", "list(net, I, J)")
    ylab <- quote(K[net,I,J](r))
  }
  #
  if(np < 2) {
    # no pairs to count: return zero function
    zeroes <- rep(0, length(r))
    df <- data.frame(r = r, est = zeroes)
    K <- fv(df, "r", ylab,
            "est", . ~ r, c(0, rmax),
            c("r", makefvlabel(NULL, "hat", fname)),
            c("distance argument r", "estimated %s"),
            fname = fname)
    attr(K, "correction") <- correction
    return(K)
  }
  #
  ## nI <- sum(I)
  ## nJ <- sum(J)
  ## whichI <- which(I)
  ## whichJ <- which(J)
  clash <- I & J
  has.clash <- any(clash)
  ## compute pairwise distances
  DIJ <- crossdist(X[I], X[J], check=FALSE)
  if(has.clash) {
    ## exclude pairs of identical points from consideration
    Iclash <- which(clash[I])
    Jclash <- which(clash[J])
    DIJ[cbind(Iclash,Jclash)] <- Inf
  }
  #---  compile into K function ---
  if(correction == "none" && is.null(reweight)) {
    # no weights (Okabe-Yamada)
    K <- compileK(DIJ, r, denom=denom, check=FALSE,
                  fname=fname, samplesize=samplesize)
    K <- rebadge.as.crossfun(K, "K", "net", "I", "J")
    unitname(K) <- unitname(X)
    attr(K, "correction") <- correction
    return(K)
  }
  if(correction == "none") {
     edgewt <- 1
  } else {
    ## inverse m weights (Ang's correction)
    ## determine tolerance
    toler <- default.linnet.tolerance(L)
    ## compute m[i,j]
    m <- DoCountCrossEnds(X, I, J, DIJ, toler)
    edgewt <- 1/m
  }
  # compute K
  wt <- if(!is.null(reweight)) edgewt * reweight else edgewt
  K <- compileK(DIJ, r, weights=wt, denom=denom, check=FALSE,
                fname=fname, samplesize=samplesize)
  ## rebadge and tweak
  K <- rebadge.as.crossfun(K, "K", "L", "I", "J")
  fname <- attr(K, "fname")
  # tack on theoretical value
  K <- bind.fv(K, data.frame(theo=r),
               makefvlabel(NULL, NULL, fname, "pois"),
               "theoretical Poisson %s")
  ## 
  unitname(K) <- unitname(X)
  fvnames(K, ".") <- rev(fvnames(K, "."))
  # show working
  if(showworking)
    attr(K, "working") <- list(DIJ=DIJ, wt=wt)
  attr(K, "correction") <- correction
  return(K)
}

DoCountCrossEnds <- function(X, I, J, DIJ, toler) {
  stopifnot(is.lpp(X))
  stopifnot(is.logical(I) && is.logical(J))
  stopifnot(is.matrix(DIJ))
  nI <- sum(I)
  nJ <- sum(J)
  whichI <- which(I)
  whichJ <- which(J)
  m <- matrix(1, nI, nJ)
  easy <- list(is.connected=TRUE)
  L <- domain(X)
  if(is.connected(L)) {
    ## network is connected
    for(k in seq_len(nJ)) {
      j <- whichJ[k]
      I.j <- (whichI != j)
      i.j <- setdiff(whichI, j)
      m[I.j, k] <- countends(L, X[i.j], DIJ[I.j,k],
                              toler=toler, internal=easy)
    }
  } else {
    ## network is disconnected - split into components
    vlab <- connected(L, what="labels")
    subsets <- split(seq_len(nvertices(L)), factor(vlab))
    for(s in subsets) {
      ## extract one component and the points falling in it
      Xs <- thinNetwork(X, retainvertices=s)
      ns <- npoints(Xs)
      if(ns >= 2) {
        Ls <- domain(Xs)
        ## identify which points of X are involved
        relevant <- attr(Xs, "retainpoints")
        Xindex <- which(relevant)
        ## classify them
        Isub <- I[relevant]
        ## Jsub <- J[relevant]
        ## identify relevant submatrix of DIJ
        rowsub <- relevant[I]
        colsub <- relevant[J]
        ## corresponding indices in X
        ## rowXindex <- whichI[rowsub]
        ## colXindex <- whichJ[colsub]
        ## handle
        for(k in which(colsub)) {
          j <- whichJ[k]
          I.j <- rowsub & (whichI != j)
          i.j <- Isub & (Xindex != j)
          m[ I.j, k ] <- countends(Ls, Xs[i.j], DIJ[I.j, k],
                                   toler=toler,
                                   internal=easy)
        }
      }
    }
  }
  if(any(uhoh <- (m == 0) & is.finite(DIJ))) {
    warning("Internal error: disc boundary count equal to zero")
    m[uhoh] <- 1
  }
  return(m)
}

Try the spatstat.linnet package in your browser

Any scripts or data that you put into this service are public.

spatstat.linnet documentation built on Sept. 20, 2024, 5:06 p.m.