R/postprocessing.R

Defines functions getGrid CSplot residuals.mcmcspatsurv reconstruct.bs.coxph reconstruct.bs.mcmcspatsurv reconstruct.bs hazardexceedance MCE posteriorcov priorposterior predict.mcmcspatsurv densityquantile_PP Et_PP density_PP survival_PP hazard_PP baselinehazard randompars fixedpars hazardpars spatialpars frailtylag1 vcov.mlspatsurv vcov.mcmcspatsurv summary.mcmcspatsurv quantile.mlspatsurv quantile.mcmcspatsurv print.mlspatsurv print.mcmcspatsurv

Documented in baselinehazard CSplot density_PP densityquantile_PP Et_PP fixedpars frailtylag1 getGrid hazardexceedance hazardpars hazard_PP MCE posteriorcov predict.mcmcspatsurv print.mcmcspatsurv print.mlspatsurv priorposterior quantile.mcmcspatsurv quantile.mlspatsurv randompars reconstruct.bs reconstruct.bs.coxph reconstruct.bs.mcmcspatsurv residuals.mcmcspatsurv spatialpars summary.mcmcspatsurv survival_PP vcov.mcmcspatsurv vcov.mlspatsurv

##' print.mcmcspatsurv function
##'
##' A function to print summary tables from an MCMC run
##'
##' @method print mcmcspatsurv
##' @param x an object inheriting class mcmcspatsurv
##' @param probs vector of quantiles to return
##' @param digits see help file ?format
##' @param scientific see help file ?format
##' @param ... additional arguments, not used here
##' @return prints summary tables to the console
##' @seealso \link{quantile.mcmcspatsurv}, \link{summary.mcmcspatsurv}, \link{vcov.mcmcspatsurv},
##' \link{frailtylag1}, \link{spatialpars}, \link{hazardpars}, \link{fixedpars}, \link{randompars},
##' \link{baselinehazard}, \link{predict.mcmcspatsurv}, \link{priorposterior}, \link{posteriorcov}, \link{MCE},
##' \link{hazardexceedance}
##' @export

print.mcmcspatsurv <- function(x,probs=c(0.5,0.025,0.975),digits = 3, scientific = -3,...){

    quant <- quantile(x,probs)

    cat("\n")
    cat("Fixed Effects:\n")
    print(quant$betaquant,digits=digits,scientific=scientific)
    cat("\n")

    cat("Baseline Hazard Parameters:\n")
    print(quant$omegaquant,digits=digits,scientific=scientific)
    cat("\n")

    cat("Spatial Covariance Parameters:\n")
    print(quant$etaquant,digits=digits,scientific=scientific)
    cat("\n")

    if(x$control$nugget){
        cat("Estimated standard deviation of nugget:\n")
        print(x$Usigma_mean,digits=digits,scientific=scientific)
        cat("standard error:\n")
        print(sqrt(x$Usigma_var),digits=digits,scientific=scientific)
        cat("\n")
    }

    cat("Deviance Information Criterion: ",x$DIC,"\n")
    cat("\n")

    cat("Watanabe-Akaike Information Criterion: ",x$WAIC,"\n")
    cat("\n")

    cat("MCMC Details:\n")
    m <- matrix(c(x$mcmc.control$nits,x$mcmc.control$burn,x$mcmc.control$thin),3,1)
    rownames(m) <- c("Number of Iterations","Burnin length","Thining")
    colnames(m) <- ""
    print(m,digits=digits,scientific=scientific)
    cat("\n")

    cat("Running Time:\n")
    print(x$time.taken)
}


##' print.mlspatsurv function
##'
##' A function to print summary tables from an MCMC run
##'
##' @method print mlspatsurv
##' @param x an object inheriting class mcmcspatsurv
##' @param probs vector of quantiles to return
##' @param digits see help file ?format
##' @param scientific see help file ?format
##' @param ... additional arguments, not used here
##' @return prints summary tables to the console
##' @seealso \link{quantile.mcmcspatsurv}, \link{summary.mcmcspatsurv}, \link{vcov.mcmcspatsurv},
##' \link{frailtylag1}, \link{spatialpars}, \link{hazardpars}, \link{fixedpars}, \link{randompars},
##' \link{baselinehazard}, \link{predict.mcmcspatsurv}, \link{priorposterior}, \link{posteriorcov}, \link{MCE},
##' \link{hazardexceedance}
##' @export

print.mlspatsurv <- function(x,probs=c(0.5,0.025,0.975),digits = 3, scientific = -3,...){

    cat("Summaries produced using Gaussian samples drawn from a quadratic approximation at the MLE\n")

    quant <- quantile(x,probs)

    cat("\n")
    cat("Fixed Effects:\n")
    print(quant$betaquant,digits=digits,scientific=scientific)
    cat("\n")

    cat("Baseline Hazard Parameters:\n")
    print(quant$omegaquant,digits=digits,scientific=scientific)
    cat("\n")

    cat("Likelihood: ",-x$mlmod$value,"\n")
    cat("\n")

    cat("Running Time:\n")
    print(x$time.taken)
}

##' quantile.mcmcspatsurv function
##'
##' A function to extract quantiles of the parameters from an mcmc run
##'
##' @method quantile mcmcspatsurv
##' @param x an object inheriting class mcmcspatsurv
##' @param probs vector of probabilities
##' @param ... other arguments to be passed to the function, not used here
##' @return quantiles of model parameters
##' @seealso \link{print.mcmcspatsurv}, \link{summary.mcmcspatsurv}, \link{vcov.mcmcspatsurv},
##' \link{frailtylag1}, \link{spatialpars}, \link{hazardpars}, \link{fixedpars}, \link{randompars},
##' \link{baselinehazard}, \link{predict.mcmcspatsurv}, \link{priorposterior}, \link{posteriorcov}, \link{MCE},
##' \link{hazardexceedance}
##' @export

quantile.mcmcspatsurv <- function(x,probs=c(0.025,0.5,0.975),...){
    m1 <- t(apply(exp(x$betasamp),2,quantile,probs=probs))
    m2 <- t(apply(x$omegasamp,2,quantile,probs=probs))
    m3 <- t(apply(x$etasamp,2,quantile,probs=probs))
    return(list(betaquant=m1,omegaquant=m2,etaquant=m3))
}


##' quantile.mlspatsurv function
##'
##' A function to extract quantiles of the parameters from an mcmc run
##'
##' @method quantile mlspatsurv
##' @param x an object inheriting class mcmcspatsurv
##' @param probs vector of probabilities
##' @param ... other arguments to be passed to the function, not used here
##' @return quantiles of model parameters
##' @seealso \link{print.mcmcspatsurv}, \link{summary.mcmcspatsurv}, \link{vcov.mcmcspatsurv},
##' \link{frailtylag1}, \link{spatialpars}, \link{hazardpars}, \link{fixedpars}, \link{randompars},
##' \link{baselinehazard}, \link{predict.mcmcspatsurv}, \link{priorposterior}, \link{posteriorcov}, \link{MCE},
##' \link{hazardexceedance}
##' @export

quantile.mlspatsurv <- function(x,probs=c(0.025,0.5,0.975),...){
    m1 <- t(apply(exp(x$betasamp),2,quantile,probs=probs))
    m2 <- t(apply(x$omegasamp,2,quantile,probs=probs))
    return(list(betaquant=m1,omegaquant=m2))
}


##' summary.mcmcspatsurv function
##'
##' A function to return summary tables from an MCMC run
##'
##' @method summary mcmcspatsurv
##' @param object an object inheriting class mcmcspatsurv
##' @param probs vector of quantiles to return
##' @param ... additional arguments
##' @return summary tables to the console
##' @seealso \link{print.mcmcspatsurv}, \link{quantile.mcmcspatsurv}, \link{vcov.mcmcspatsurv},
##' \link{frailtylag1}, \link{spatialpars}, \link{hazardpars}, \link{fixedpars}, \link{randompars},
##' \link{baselinehazard}, \link{predict.mcmcspatsurv}, \link{priorposterior}, \link{posteriorcov}, \link{MCE},
##' \link{hazardexceedance}
##' @export

summary.mcmcspatsurv <- function(object,probs=c(0.5,0.025,0.975),...){
    quant <- quantile(object,probs)
    return(rbind(quant$betaquant,quant$omegaquant,quant$etaquant))
}



##' vcov.mcmcspatsurv function
##'
##' A function to return the variance covariance matrix of the parameters beta, omega and eta
##'
##' @method vcov mcmcspatsurv
##' @param object an object inheriting class mcmcspatsurv
##' @param ... other arguments, not used here
##' @return the variance covariance matrix of the parameters beta, omega and eta
##' @seealso \link{print.mcmcspatsurv}, \link{quantile.mcmcspatsurv}, \link{summary.mcmcspatsurv},
##' \link{frailtylag1}, \link{spatialpars}, \link{hazardpars}, \link{fixedpars}, \link{randompars},
##' \link{baselinehazard}, \link{predict.mcmcspatsurv}, \link{priorposterior}, \link{posteriorcov}, \link{MCE},
##' \link{hazardexceedance}
##' @export

vcov.mcmcspatsurv <- function(object,...){
    return(cov(cbind(object$betasamp,object$omegasamp,object$etasamp)))
}

##' vcov.mlspatsurv function
##'
##' A function to return the variance covariance matrix of the parameters beta, omega and eta
##'
##' @method vcov mlspatsurv
##' @param object an object inheriting class mcmcspatsurv
##' @param ... other arguments, not used here
##' @return the variance covariance matrix of the parameters beta, omega and eta
##' @seealso \link{print.mcmcspatsurv}, \link{quantile.mcmcspatsurv}, \link{summary.mcmcspatsurv},
##' \link{frailtylag1}, \link{spatialpars}, \link{hazardpars}, \link{fixedpars}, \link{randompars},
##' \link{baselinehazard}, \link{predict.mcmcspatsurv}, \link{priorposterior}, \link{posteriorcov}, \link{MCE},
##' \link{hazardexceedance}
##' @export

vcov.mlspatsurv <- function(object,...){
    mat <- solve(object$mlmod$hessian)
    rownames(mat) <- c(colnames(object$betasamp),colnames(object$omegasamp))
    colnames(mat) <- c(colnames(object$betasamp),colnames(object$omegasamp))
    return(mat)
}



##' frailtylag1 function
##'
##' A function to produce a plot of, and return, the lag 1 (or higher, see argument 'lag') autocorrelation for each of the spatially correlated frailty chains
##'
##' @param object an object inheriting class mcmcspatsurv
##' @param plot logical whether to plot the result, default is TRUE
##' @param lag the lag to plot, the default is 1
##' @param ... other arguments to be passed to the plot function
##' @return the lag 1 autocorrelation for each of the spatially correlated frailty chains
##' @seealso \link{print.mcmcspatsurv}, \link{quantile.mcmcspatsurv}, \link{summary.mcmcspatsurv}, \link{vcov.mcmcspatsurv},
##' \link{spatialpars}, \link{hazardpars}, \link{fixedpars}, \link{randompars},
##' \link{baselinehazard}, \link{predict.mcmcspatsurv}, \link{priorposterior}, \link{posteriorcov}, \link{MCE},
##' \link{hazardexceedance}
##' @export

frailtylag1 <- function(object,plot=TRUE,lag=1,...){
    lag1acf <- apply(object$Ysamp,2,function(x){acf(x,plot=FALSE)$acf[lag+1]})
    if(plot){
        plot(lag1acf,xlab="Frailty Index",ylab="Lag 1 Autocorrelation",ylim=c(-1,1),...)
    }
    return(lag1acf)
}




##' spatialpars function
##'
##' A function to return the mcmc chains for the spatial covariance function parameters
##'
##' @param x an object of class mcmcspatsurv
##' @return the eta mcmc chains
##' @seealso \link{print.mcmcspatsurv}, \link{quantile.mcmcspatsurv}, \link{summary.mcmcspatsurv}, \link{vcov.mcmcspatsurv},
##' \link{frailtylag1}, \link{hazardpars}, \link{fixedpars}, \link{randompars},
##' \link{baselinehazard}, \link{predict.mcmcspatsurv}, \link{priorposterior}, \link{posteriorcov}, \link{MCE},
##' \link{hazardexceedance}
##' @export

spatialpars <- function(x){
    return(x$etasamp)
}



##' hazardpars function
##'
##' A function to return the mcmc chains for the hazard function parameters
##'
##' @param x an object of class mcmcspatsurv
##' @return the omega mcmc chains
##' @seealso \link{print.mcmcspatsurv}, \link{quantile.mcmcspatsurv}, \link{summary.mcmcspatsurv}, \link{vcov.mcmcspatsurv},
##' \link{frailtylag1}, \link{spatialpars}, \link{fixedpars}, \link{randompars},
##' \link{baselinehazard}, \link{predict.mcmcspatsurv}, \link{priorposterior}, \link{posteriorcov}, \link{MCE},
##' \link{hazardexceedance}
##' @export

hazardpars <- function(x){
    return(x$omegasamp)
}



##' fixedpars function
##'
##' A function to return the mcmc chains for the covariate effects
##'
##' @param x an object of class mcmcspatsurv
##' @return the beta mcmc chains
##' @seealso \link{print.mcmcspatsurv}, \link{quantile.mcmcspatsurv}, \link{summary.mcmcspatsurv}, \link{vcov.mcmcspatsurv},
##' \link{frailtylag1}, \link{spatialpars}, \link{hazardpars}, \link{randompars},
##' \link{baselinehazard}, \link{predict.mcmcspatsurv}, \link{priorposterior}, \link{posteriorcov}, \link{MCE},
##' \link{hazardexceedance}
##' @export

fixedpars <- function(x){
    return(x$betasamp)
}



##' randompars function
##'
##' A function to return the mcmc chains for the spatially correlated frailties
##'
##' @param x an object of class mcmcspatsurv
##' @return the Y mcmc chains
##' @seealso \link{print.mcmcspatsurv}, \link{quantile.mcmcspatsurv}, \link{summary.mcmcspatsurv}, \link{vcov.mcmcspatsurv},
##' \link{frailtylag1}, \link{spatialpars}, \link{hazardpars}, \link{fixedpars},
##' \link{baselinehazard}, \link{predict.mcmcspatsurv}, \link{priorposterior}, \link{posteriorcov}, \link{MCE},
##' \link{hazardexceedance}
##' @export

randompars <- function(x){
    return(x$Ysamp)
}



##' baselinehazard function
##'
##' A function to compute quantiles of the posterior baseline hazard or cumulative baseline hazard.
##'
##' @param x an object inheriting class mcmcspatsurv
##' @param t optional vector of times at which to compute the quantiles, Defult is NULL, in which case a uniformly spaced vector of length n from 0 to the maximum time is used
##' @param n the number of points at which to compute the quantiles if t is NULL
##' @param probs vector of probabilities
##' @param cumulative logical, whether to return the baseline hazard (default i.e. FALSE) or cumulative baseline hazard
##' @param plot whether to plot the result
##' @param bw Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots.
##' @param ... additional arguments to be passed to plot
##' @return the vector of times and quantiles of the baseline or cumulative baseline hazard at those times
##' @seealso \link{print.mcmcspatsurv}, \link{quantile.mcmcspatsurv}, \link{summary.mcmcspatsurv}, \link{vcov.mcmcspatsurv},
##' \link{frailtylag1}, \link{spatialpars}, \link{hazardpars}, \link{fixedpars}, \link{randompars},
##' \link{predict.mcmcspatsurv}, \link{priorposterior}, \link{posteriorcov}, \link{MCE},
##' \link{hazardexceedance}
##' @export

baselinehazard <- function(x,t=NULL,n=100,probs=c(0.025,0.5,0.975),cumulative=FALSE,plot=TRUE,bw=FALSE,...){

    omegasamp <- x$omegasamp

    if(is.null(t)){
        if(x$censoringtype=="left" | x$censoringtype=="right"){
            t <- seq(0,max(x$survivaldata[,"time"],na.rm=TRUE),length.out=n)
        }
        else{
            t <- seq(0,max(c(x$survivaldata[,"time1"],x$survivaldata[,"time2"]),na.rm=TRUE),length.out=n)
        }
    }

    fun <- function(pars){
        f <- basehazard(x$dist)(pars)
        return(f(t))
    }

    YLAB <- "Baseline Hazard"
    if(cumulative){
        fun <- function(pars){
            f <- cumbasehazard(x$dist)(pars)
            return(f(t))
        }
        YLAB <- "Cumulative Baseline Hazard"
    }
    samp <- t(apply(omegasamp,1,fun))

    toreturn <- t(apply(samp,2,quantile,probs=probs,na.rm=TRUE))

    rownames(toreturn) <- t

    if(plot){
        if(length(probs)==3){
            if(bw){
                matplot(t,toreturn,type="l",col=c("black","black","black"),lty=c("dotted","solid","dashed"),xlab="time",ylab=YLAB,...)
                legend("topright",lty=c("dashed","solid","dotted"),col=rev(c("black","black","black")),legend=rev(probs))
            }
            else{
                matplot(t,toreturn,type="l",col=c("purple","black","blue"),lty=c("dashed","solid","dashed"),xlab="time",ylab=YLAB,...)
                legend("topright",lty=c("dashed","solid","dashed"),col=rev(c("purple","black","blue")),legend=rev(probs))
            }
        }
        else{
            matplot(t,toreturn,type="l",xlab="time",ylab="Baseline Hazard")
        }
    }

    return(list(t=t,qts=toreturn))
}






##' hazard_PP function
##'
##' A function to compute an individual's hazard function.
##'
##' @param inputs inputs for the function including the model matrix, frailties, fixed effects and the parameters of the baseline hazard derived from this model
##' @return the hazard function for the individual
##' @export

hazard_PP <- function(inputs){
    X <- inputs$X
    Y <- inputs$Y
    beta <- inputs$beta

    Xbeta <- sum(X*beta)
    expXbeta <- exp(Xbeta)
    expXbeta_plus_Y <- expXbeta*exp(Y)

    f <- function(t){
        h <- basehazard(inputs$dist)(inputs$omega)
        return(expXbeta_plus_Y*h(t))
    }
    return(f)
}




##' survival_PP function
##'
##' A function to compute an individual's survival function
##'
##' @param inputs inputs for the function including the model matrix, frailties, fixed effects and the parameters of the baseline hazard derived from this model
##' @return the survival function for the individual
##' @export
survival_PP <- function(inputs){
    X <- inputs$X
    Y <- inputs$Y
    beta <- inputs$beta

    Xbeta <- sum(X*beta)
    expXbeta <- exp(Xbeta)
    expXbeta_plus_Y <- expXbeta*exp(Y)

    f <- function(t){
        H <- cumbasehazard(inputs$dist)(inputs$omega)
        return(exp(-expXbeta_plus_Y*H(t)))
    }
    return(f)
}



##' density_PP function
##'
##' A function to compute an individual's density function
##'
##' @param inputs inputs for the function including the model matrix, frailties, fixed effects and the parameters of the baseline hazard derived from this model
##' @return the density function for the individual
##' @export

density_PP <- function(inputs){
    X <- inputs$X
    Y <- inputs$Y
    beta <- inputs$beta

    Xbeta <- sum(X*beta)
    expXbeta <- exp(Xbeta)
    expXbeta_plus_Y <- expXbeta*exp(Y)

    f <- function(t){
        h <- basehazard(inputs$dist)(inputs$omega)
        H <- cumbasehazard(inputs$dist)(inputs$omega)
        return(expXbeta_plus_Y*h(t)*exp(-expXbeta_plus_Y*H(t)))
    }
    return(f)
}



##' Et_PP function
##'
##' A function to compute an individual's approximate expected survival time using numerical integration. Note this appears to be unstable; the
##' function is based on R's integrate function. Not intended for general use (yet!).
##'
##' @param inputs inputs for the function including the model matrix, frailties, fixed effects and the parameters of the baseline hazard derived from this model
##' @return the expected survival time for the individual, obtained by numerical integration of the density function.
##' @export

Et_PP <- function(inputs){
    f <- density_PP(inputs)
    expect <- function(t){
        return(t*f(t))
    }
    int <- try(integrate(expect,0,Inf)$value,silent=TRUE)
    if(inherits(int,"try-error")){
        return(NA)
    }
    else{
        return(int)
    }
}



##' densityquantile_PP function
##'
##' A function to compute quantiles of the density function
##'
##' @param inputs inputs for the function including the model matrix, frailties, fixed effects and the parameters of the baseline hazard derived from this model
##' @return quantiles of the density function for the individual
##' @export

densityquantile_PP <- function(inputs){
    X <- inputs$X
    Y <- inputs$Y
    beta <- inputs$beta

    Xbeta <- sum(X*beta)
    expXbeta <- exp(Xbeta)
    expXbeta_plus_Y <- expXbeta*exp(Y)

    dq <- densityquantile(inputs$dist)(inputs$omega,other=list(expXbetaplusY=expXbeta_plus_Y))

    return(dq)
}





##' predict.mcmcspatsurv function
##'
##' A function to produce predictions from MCMC output. These could include quantiles of the individual density, survival or
##' hazard functions or quantiles of the density function (if available analytically).
##'
##' @method predict mcmcspatsurv
##' @param object an object of class mcmcspatsurv
##' @param type can be "density", "hazard", "survival" or "densityquantile". Default is "density". Note that "densityquantile" is not always analytically tractable for some choices of baseline hazard function.
##' @param t optional vector of times at which to compute the quantiles, Defult is NULL, in which case a uniformly spaced vector of length n from 0 to the maximum time is used
##' @param n the number of points at which to compute the quantiles if t is NULL
##' @param indx the index number of a particular individual or vector of indices of individuals for which the quantiles should be produced
##' @param probs vector of probabilities
##' @param plot whether to plot the result
##' @param pause logical whether to pause between plots, the default is TRUE
##' @param bw Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots.
##' @param ... other arguments, not used here
##' @return the required predictions
##' @seealso \link{print.mcmcspatsurv}, \link{quantile.mcmcspatsurv}, \link{summary.mcmcspatsurv}, \link{vcov.mcmcspatsurv},
##' \link{frailtylag1}, \link{spatialpars}, \link{hazardpars}, \link{fixedpars}, \link{randompars},
##' \link{baselinehazard}, \link{priorposterior}, \link{posteriorcov}, \link{MCE},
##' \link{hazardexceedance}
##' @export

predict.mcmcspatsurv <- function(object,type="density",t=NULL,n=110,indx=NULL,probs=c(0.025,0.5,0.975),plot=TRUE,pause=TRUE,bw=FALSE,...){

    newdata <- object$X

    if(is.null(indx)){
        indx <- 1:nrow(newdata)
    }

    nobs <- length(indx) # nrow(newdata)

    if(is.null(t)){
        if(object$censoringtype=="left" | object$censoringtype=="right"){
            t <- seq(0,max(object$survivaldata[,"time"],na.rm=TRUE),length.out=n)
        }
        else{
            t <- seq(0,max(c(object$survivaldata[,"time1"],object$survivaldata[,"time1"]),na.rm=TRUE),length.out=n)
        }
    }

    svdat <- as.matrix(object$survivaldata)

    predictmat <- NULL
    if(type=="densityquantile"){
        t <- probs
        n <- length(t)
        pb <- txtProgressBar(min = 0, max = nobs)
        predictmat <- matrix(NA,nobs,length(probs))
    }

    if(type=="Et"){
        n <- nobs
        pb <- txtProgressBar(min = 0, max = nobs)
    }

    nits <- nrow(object$Ysamp)

    omegasamp <- object$omegasamp
    dat <- matrix(NA,nits,n)
    for(i in indx){
        if(type!="Et"){
            dat <- matrix(NA,nits,n)
        }
        inputs <- list()
        inputs$X <- newdata[i,]
        inputs$dist <- object$dist
        inputs$survdat <- svdat[i,]
        for (j in 1:nits){
            if(object$gridded | object$latentmode=="polygons"){
                if(object$gridded){
                    inputs$Y <- object$Ysamp[j,object$cellidx[i]]
                }
                if(object$latentmode=="polygons"){
                    inputs$Y <- object$Ysamp[j,object$control$idx[i]]
                }
            }
            else{
                inputs$Y <- object$Ysamp[j,i]
            }

            inputs$beta <- object$betasamp[j,]
            inputs$omega <- omegasamp[j,]
            fun <- get(paste(type,"_PP",sep=""))(inputs)
            if(type=="Et"){
                dat[j,i] <- fun
            }
            else{
                dat[j,] <- fun(t)
            }
        }

        if(type!="densityquantile" & type!="Et"){
            toplot <- t(apply(dat,2,quantile,probs=probs,na.rm=TRUE))
            if(bw){
                matplot(t,toplot,type="l",col=c("black","black","black"),lty=c("dotted","solid","dashed"),xlab="time",ylab=type,main=paste("Individual",i))
                legend("topright",lty=c("dashed","solid","dotted"),col=rev(c("black","black","black")),legend=rev(probs))
            }
            else{
                matplot(t,toplot,type="l",col=c("purple","black","blue"),lty=c("dashed","solid","dashed"),xlab="time",ylab=type,main=paste("Individual",i))
                legend("topright",lty=c("dashed","solid","dashed"),col=rev(c("purple","black","blue")),legend=rev(probs))
            }

            if(pause){
                cat("[press [enter] to continue]")
                ob <- scan(n=1,quiet=TRUE)
            }
        }
        else{
            setTxtProgressBar(pb,i)
        }

        if(!is.null(predictmat)){
            if(type!="Et"){
                predictmat[i,] <- colMeans(dat)
            }
        }
    }

    if(type=="densityquantile" & type=="Et"){
        close(pb)
    }

    if(type=="Et"){
        if(any(is.na(dat))){
            warning("Warning: expectation could not be computed in all cases, see attr( . ,'empirical') to evaluate the scope of this problem",immediate.=TRUE)
        }
        predictmat <- colMeans(dat,na.rm=TRUE)
        attr(predictmat,"empirical") <- t(dat)
    }

    if(length(indx==1)&(type=="hazard"|type=="survival"|type=="density")){
        predictmat <- toplot
    }


    return(list(t=t,predict=predictmat))

}




##' priorposterior function
##'
##' A function to produce plots of the prior (which shows as a red line) and posterior (showing as a histogram)
##'
##' @param x an object inheriting class mcmcspatsurv
##' @param breaks see ?hist
##' @param ylab optional y label
##' @param main optional title
##' @param pause logical whether to pause between plots, the default is TRUE
##' @param bw Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots.
##' @param ... other arguments passed to the hist function
##' @return plots of the prior (red line) and posterior (histogram).
##' @seealso \link{print.mcmcspatsurv}, \link{quantile.mcmcspatsurv}, \link{summary.mcmcspatsurv}, \link{vcov.mcmcspatsurv},
##' \link{frailtylag1}, \link{spatialpars}, \link{hazardpars}, \link{fixedpars}, \link{randompars},
##' \link{baselinehazard}, \link{predict.mcmcspatsurv}, \link{posteriorcov}, \link{MCE},
##' \link{hazardexceedance}
##' @export

priorposterior <- function(x,breaks=30,ylab="Density",main="",pause=TRUE,bw=FALSE,...){
    nbeta <- ncol(x$betasamp)
    nomega <- ncol(x$omegasamp)
    neta <- ncol(x$etasamp)

    ######################
    # beta

    pmean <- x$priors$betaprior$mean
    psd <- x$priors$betaprior$sd
    if(length(pmean)==1){
        pmean <- rep(pmean,ncol(x$betasamp))
    }
    if(length(psd)==1){
        psd <- rep(psd,ncol(x$betasamp))
    }

    for(i in 1:nbeta){
        h <- hist(x$betasamp[,i],ylab=ylab,xlab=colnames(x$betasamp)[i],breaks=breaks,freq=FALSE,main=main,...)
        xrg <- range(h$breaks)
        r <- seq(xrg[1],xrg[2],length.out=1000)
        if(!bw){
            lines(r,dnorm(r,mean=pmean[i],sd=psd[i]),col="red",lwd=2)
        }
        else{
            lines(r,dnorm(r,mean=pmean[i],sd=psd[i]),lwd=2)
        }
        if(pause){
            cat("[press [enter] to continue]")
            scan(n=1,quiet=TRUE)
        }
    }


    ######################
    # omega

    pmean <- x$priors$omegaprior$mean
    psd <- x$priors$omegaprior$sd
    if(length(pmean)==1){
        pmean <- rep(pmean,ncol(x$omegasamp))
    }
    if(length(psd)==1){
        psd <- rep(psd,ncol(x$omegasamp))
    }

    samp <- x$omegasamp
    if(ncol(samp)>1){
        samp <- t(apply(samp,1,x$control$omegatrans))
    }
    else{
        samp <- t(t(apply(samp,1,x$control$omegatrans)))
    }
    colnames(samp) <- distinfo(x$dist)()$parnames
    for(i in 1:nomega){
        h <- hist(samp[,i],ylab=ylab,xlab=paste("Transformed",colnames(x$omegasamp)[i]),breaks=breaks,freq=FALSE,main=main,...)
        xrg <- range(h$breaks)
        r <- seq(xrg[1],xrg[2],length.out=1000)
        if(!bw){
            lines(r,dnorm(r,mean=pmean[i],sd=psd[i]),col="red",lwd=2)
        }
        else{
            lines(r,dnorm(r,mean=pmean[i],sd=psd[i]),lwd=2)
        }
        if(pause){
            cat("[press [enter] to continue]")
            scan(n=1,quiet=TRUE)
        }
    }

    ######################
    # eta

    pmean <- x$priors$etaprior$mean
    psd <- x$priors$etaprior$sd
    if(length(pmean)==1){
        pmean <- rep(pmean,ncol(x$etasamp))
    }
    if(length(psd)==1){
        psd <- rep(psd,ncol(x$etasamp))
    }

    samp <- x$etasamp
     if(ncol(samp)>1){
        samp <- t(apply(samp,1,x$cov.model$trans))
    }
    else{
        samp <- t(t(apply(samp,1,x$cov.model$trans)))
    }
    colnames(samp) <- colnames(x$etasamp)
    for(i in 1:neta){
        h <- hist(samp[,i],ylab=ylab,xlab=paste("Transformed",colnames(x$etasamp)[i]),breaks=breaks,freq=FALSE,main=main,...)
        xrg <- range(h$breaks)
        r <- seq(xrg[1],xrg[2],length.out=1000)
        if(!bw){
            lines(r,dnorm(r,mean=pmean[i],sd=psd[i]),col="red",lwd=2)
        }
        else{
            lines(r,dnorm(r,mean=pmean[i],sd=psd[i]),lwd=2)
        }
        if(pause){
            cat("[press [enter] to continue]")
            scan(n=1,quiet=TRUE)
        }
    }
}



##' posteriorcov function
##'
##' A function to produce a plot of the posterior covariance function with upper and lower quantiles.
##'
##' @param x an object of class mcmcspatsurv
##' @param probs vector of probabilities to be fed to quantile function
##' @param rmax  maximum distance in space to compute this distance up to
##' @param n the number of points at which to evaluate the posterior covariance.
##' @param plot whether to plot the result
##' @param bw Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots.
##' @param corr logical whether to return the correlation function, default is FALSE i.e. returns the covariance function
##' @param ... other arguments to be passed to matplot function
##' @return produces a plot of the posterior spatial covariance function.
##' @seealso \link{print.mcmcspatsurv}, \link{quantile.mcmcspatsurv}, \link{summary.mcmcspatsurv}, \link{vcov.mcmcspatsurv},
##' \link{frailtylag1}, \link{spatialpars}, \link{hazardpars}, \link{fixedpars}, \link{randompars},
##' \link{baselinehazard}, \link{predict.mcmcspatsurv}, \link{priorposterior}, \link{MCE},
##' \link{hazardexceedance}
##' @export

posteriorcov <- function(x,probs=c(0.025,0.5,0.975),rmax=NULL,n=100,plot=TRUE,bw=FALSE,corr=FALSE,...){
    nr <- nrow(x$etasamp)
    nc <- ncol(x$etasamp)

    if(!is.null(rmax)){
        rmaxx <- rmax
    }
    else{
        if(is.null(x$shape)){
            rmaxx <- 0.25*sum(apply(bbox(x$data),1,diff))/2 # approx 1/4 of mean length of observation window
        }
        else{
            rmaxx <- 0.25*sum(apply(bbox(x$shape),1,diff))/2 # approx 1/4 of mean length of observation window
        }
    }

    r <- seq(0,rmaxx,length.out=n)
    #covs <- t(apply(x$etasamp,1,function(pp){x$cov.model$eval(r,pars=pp)}))
    covs <- t(apply(x$etasamp,1,function(pp){EvalCov(x$cov.model,u=r,parameters=pp)}))

    sig2 <- x$etasamp[,which(colnames(x$etasamp)=="sigma")]^2

    LAB <- "Covariance"
    if(corr){
        covs <- covs / sig2
        LAB <- "Correlation"
    }

    qts <- t(apply(covs,2,quantile,probs=probs))

    rownames(qts) <- r

    if(plot){
        if(length(probs)==3){
            if(bw){
                matplot(r,qts,type="l",col=c("black","black","black"),lty=c("dotted","solid","dashed"),xlab="Distance",ylab=LAB)
                legend("topright",lty=c("dashed","solid","dotted"),col=c("black","black","black"),legend=rev(probs))
            }
            else{
                matplot(r,qts,type="l",col=c("purple","black","blue"),lty=c("dashed","solid","dashed"),xlab="Distance",ylab=LAB)
                legend("topright",lty=c("dashed","solid","dashed"),col=rev(c("purple","black","blue")),legend=rev(probs))
            }

        }
        else{
            matplot(r,qts,type="l",xlab="Distance",ylab=LAB)
        }
    }

    return(list(r=r,qts=qts))
}




##' MCE function
##'
##' A function to compute Monte Carlo expectations from an object inheriting class mcmcspatsurv
##'
##' @param object an object inheriting class mcmcspatsurv
##' @param fun a function with arguments beta, omega, eta and Y
##' @return the Monte Carlo mean of the function over the posterior.
##' @seealso \link{print.mcmcspatsurv}, \link{quantile.mcmcspatsurv}, \link{summary.mcmcspatsurv}, \link{vcov.mcmcspatsurv},
##' \link{frailtylag1}, \link{spatialpars}, \link{hazardpars}, \link{fixedpars}, \link{randompars},
##' \link{baselinehazard}, \link{predict.mcmcspatsurv}, \link{priorposterior}, \link{posteriorcov},
##' \link{hazardexceedance}
##' @export

MCE <- function(object,fun){
    nits <- nrow(object$betasamp)

    result <- lapply(1:nits,function(i){fun(beta=object$betasamp[i,],omega=object$omegasamp[i,],eta=object$etasamp[i,],Y=object$Ysamp[i,])})

    return((1/nits)*Reduce('+',result))
}




##' hazardexceedance function
##'
##' A function to compute exceedance probabilities for the spatially correlated frailties.
##'
##' @param threshold vector of thresholds
##' @param direction default is "upper" which will calculate P(Y>threshold), alternative is "lower", which will calculate P(Y<threshold)
##' @return a function that can be passed to the function MCE in order to compute the exceedance probabilities
##' @seealso \link{print.mcmcspatsurv}, \link{quantile.mcmcspatsurv}, \link{summary.mcmcspatsurv}, \link{vcov.mcmcspatsurv},
##' \link{frailtylag1}, \link{spatialpars}, \link{hazardpars}, \link{fixedpars}, \link{randompars},
##' \link{baselinehazard}, \link{predict.mcmcspatsurv}, \link{priorposterior}, \link{posteriorcov}, \link{MCE},
##' @export

hazardexceedance <- function(threshold,direction="upper"){
    fun <- function(beta,omega,eta,Y){
        EY <- exp(Y)
        d <- length(Y)
        len <- length(threshold)
        A <- matrix(NA,len,d)

        for(i in 1:len){
            if(direction=="upper"){
                A[i,] <- as.numeric(EY>threshold[i])
            }
            else{
                A[i,] <- as.numeric(EY<threshold[i])
            }
        }
        return(A)
    }
    attr(fun,"threshold") <- threshold
    attr(fun,"direction") <- direction
    return(fun)
}

##' reconstruct.bs function
##'
##' Generic function for reconstructing B-spline covariate effects. See ?reconstruct.bs.mcmcspatsurv and ?reconstruct.bs.coxph
##'
##' @param mod an object
##' @param ... additional arguments
##' @return method reconstruct.bs
##' @export

reconstruct.bs <- function(mod,...){
    UseMethod("reconstruct.bs")
}


##' reconstruct.bs.mcmcspatsurv function
##'
##' When bs(varname) has been used in the formula of a model, this function can be used to reconstruct the posterior relative risk of
##' that parameter over time.
##'
##' @param mod model output, created by function survspat
##' @param varname name of the variable modelled by a B-spline
##' @param probs upper and lower quantiles for confidence regions to plot> The default is c(0.025,0.975).
##' @param bw Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots.
##' @param xlab label for x axis, there is a sensible default
##' @param ylab label for y axis, there is a sensible default
##' @param plot logical, whether to plot the effect of varname over time
##' @param ... other arguments to be passed to the plotting function.
##' @return median, upper and lower confidence bands for the effect of varname over time; the funciton also produces a plot.
##' @export

reconstruct.bs.mcmcspatsurv <- function(mod,varname,probs=c(0.025,0.975),bw=FALSE,xlab=NULL,ylab=NULL,plot=TRUE,...){
    if(length(probs)!=2){
        stop("length of probs must be 2")
    }
    probs1 <- sort(probs)
    probs1 <- c(probs[1],0.5,probs[2])
    colidx <- str_detect(colnames(mod$X),paste("bs\\(",varname,"\\)",sep=""))

    bss <- mod$X[,colidx]
    idx <- which(colidx)
    #fit <- colSums(summary(mod)[idx,1]*t(bss))
    fitall <- t(apply(mod$betasamp[,idx],1,function(x){colSums(x*t(bss))}))
    ul <- apply(fitall,2,quantile,probs=probs1)
    fit <- ul[2,]
    ul <- ul[-2,]
    xx <- mod$data@data[,varname]
    #browser()
    ord <- order(xx)
    xx <- xx[ord]
    yy <- exp(fit)
    yy <- yy[ord]
    low <- exp(ul[1,ord])
    upp <- exp(ul[2,ord])
    if(is.null(xlab)){
        xlab <- varname
    }
    if(is.null(ylab)){
        ylab <- "Relative Risk"
    }
    if(plot){
        plot(xx,yy,type="l",ylim=c(min(low,na.rm=TRUE),max(upp,na.rm=TRUE)),xlab=xlab,ylab=ylab,...)
        if(bw){
            lines(xx,low,col="black",lty="dotted")
            lines(xx,upp,col="black",lty="dashed")
            legend("topright",lty=c("dashed","solid","dotted"),col=rev(c("black","black","black")),legend=c(probs[2],0.5,probs[1]))
        }
        else{
            lines(xx,low,col="purple",lty="dashed")
            lines(xx,upp,col="blue",lty="dashed")
            legend("topright",lty=c("dashed","solid","dashed"),col=rev(c("purple","black","blue")),legend=c(probs[2],0.5,probs[1]))
        }
    }
    retlist <- list()
    retlist$varname <- varname
    retlist$x <- xx
    retlist$y <- cbind(lower=low,median=yy,upper=upp)
    return(retlist)
}


##' reconstruct.bs.coxph function
##'
##' When bs(varname) has been used in the formula of a coxph model, this function can be used to reconstruct the predicted relative risk of
##' that parameter over time.
##'
##' @param mod model output, created by function survspat
##' @param varname name of the variable modelled by a B-spline
##' @param fun optional function to feed in. Default is to plot relative risk against the covariate of interest. Useful choices include "identity" (but with no quotes), which plots the non-linear effect on the scale of the linear predictor.
##' @param probs upper and lower quantiles for confidence regions to plot> The default is c(0.025,0.975).
##' @param bw Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots.
##' @param xlab label for x axis, there is a sensible default
##' @param ylab label for y axis, there is a sensible default
##' @param plot logical, whether to plot the effect of varname over time
##' @param ... other arguments to be passed to the plotting function.
##' @return median, upper and lower confidence bands for the effect of varname over time; the funciton also produces a plot.
##' @export

reconstruct.bs.coxph <- function(mod,varname,fun=NULL,probs=c(0.025,0.975),bw=FALSE,xlab=NULL,ylab=NULL,plot=TRUE,...){
    X <- model.matrix(mod)
    colidx <- str_detect(colnames(X),paste("bs\\(",varname,"\\)",sep=""))
    bss <- X[,colidx]
    idx <- which(colidx)
    beta <- coefficients(mod)[idx]
    fit <- colSums(beta*t(bss))
    betachol <- t(chol(vcov(mod)[idx,idx]))
    betasamp <- t(sapply(1:nrow(X),function(x){beta+betachol%*%rnorm(length(idx))}))
    fitall <- t(apply(betasamp,1,function(x){colSums(x*t(bss))}))
    ul <- apply(fitall,2,quantile,probs=probs)

    ca <- mod$call
    mm <- as.character(ca[2])
    mm <- gsub(paste("bs\\(",varname,"\\)",sep=""),varname,mm)
    ca[2] <- as.call(parse(text=mm))
    ev <- eval(ca)
    xx <- model.matrix(ev)[,varname]

    ord <- order(xx)
    xx <- xx[ord]
    if(is.null(fun)){
        yy <- exp(fit)
    }
    else{
        yy <- fun(fit)
    }
    yy <- yy[ord]
    if(is.null(fun)){
        low <- exp(ul[1,ord])
        upp <- exp(ul[2,ord])
    }
    else{
        low <- fun(ul[1,ord])
        upp <- fun(ul[2,ord])
    }
    if(is.null(xlab)){
        xlab <- varname
    }
    if(is.null(ylab)){
        if(is.null(fun)){
            ylab <- "Relative Risk"
        }
        else{
            ylab <- as.character(quote(identity))
        }
    }
    if(plot){
        plot(xx,yy,type="l",ylim=c(min(low,na.rm=TRUE),max(upp,na.rm=TRUE)),xlab=xlab,ylab=ylab,...)
        if(bw){
            lines(xx,low,col="black",lty="dotted")
            lines(xx,upp,col="black",lty="dashed")
            legend("topright",lty=c("dashed","solid","dotted"),col=rev(c("black","black","black")),legend=c(probs[2],0.5,probs[1]))
        }
        else{
            lines(xx,low,col="purple",lty="dashed")
            lines(xx,upp,col="blue",lty="dashed")
            legend("topright",lty=c("dashed","solid","dashed"),col=rev(c("purple","black","blue")),legend=c(probs[2],0.5,probs[1]))
        }
    }
    retlist <- list()
    retlist$varname <- varname
    retlist$x <- xx
    retlist$y <- cbind(lower=low,median=yy,upper=upp)
    return(retlist)
}

##' resuiduals.mcmcspatsurv function
##'
##' A function to compute Cox-Snell / modeified Cox-Snell / Martingale or Deviance residuals
##'
##' @method residuals mcmcspatsurv
##' @param object an object produced by the function survspat
##' @param type type of residuals to return. Possible choices are 'Cox-Snell', 'modified-Cox-Snell', 'Martingale' or 'deviance'.
##' @param ... other arguments (not used here)
##' @return the residuals
##' @export
residuals.mcmcspatsurv <- function(object,type="Cox-Snell",...){

    if(object$censoringtype!="right"){
        stop("Can only compute residuals for right censored data.")
    }

    betahat <- colMeans(object$beta)
    omegahat <- colMeans(object$omegasamp)
    if(object$gridded){
        Yhat <- colMeans(object$Ysamp[,object$cellidx])
    }
    else{
        Yhat <- colMeans(object$Ysamp[,object$control$idx])
    }

    Xbeta <- colSums(betahat*t(object$X))
    expXbeta <- exp(Xbeta)
    expXbeta_plus_Y <- expXbeta*exp(Yhat)

    H <- cumbasehazard(object$dist)(omegahat)

    cs <- expXbeta_plus_Y*H(object$survivaldata[,1])
    delta <- object$survivaldata[,2]

    if(type=="Cox-Snell"){
        toreturn <- cs
        #attr(toreturn,"Hcs") <- expXbeta_plus_Y*H(cs) # does not work for flexible parametric models
    }
    else if(type=="modified-Cox-Snell"){
        toreturn <- 1-delta+cs
    }
    else if(type=="Martingale"){
        toreturn <- delta-cs
    }
    else if(type=="deviance"){
        mg <- delta-cs
        toreturn <- sign(mg) * (-2*(mg+delta*log(delta-mg)))^(1/2)
    }
    else{
        stop("Unknown residual type.")
    }

    return(toreturn)
}





##' CSplot function
##'
##' A function to produce a diagnostic plot for model fit using the Cox-Snell residuals.
##'
##' @param mod an object produced by the function survspat
##' @param plot whether to plot the result, default is TRUE
##' @param bw Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots.
##' @param ... other arguments to pass to plot
##' @return the x and y values used in the plot
##' @export

CSplot <- function(mod,plot=TRUE,bw=FALSE,...){
    sda <- mod$survivaldata
    cs <- residuals(mod,type="Cox-Snell")
    sda[,1] <- cs
    sf <- survfit(Surv(cs,mod$survivaldata[,2])~1)
    x <- sf$time
    y <- log(sf$surv)
    if(plot){
        plot(x,y,xlab="Residual, r",ylab="Log proportion of residuals exceeding r",...)
        if(bw){
            abline(0,-1,col="black",lty="dashed")
        }
        else{
            abline(0,-1,col="red")
        }
    }
    return(list(x=x,y=y))
}



##' getGrid function
##'
##' A function to extract and return the computational grid from a gridded analysis.
##'
##' @param mod an object of class mcmcspatsurv, returned by the function survspat
##' @param returnclass the class of object to return, default is a'SpatialPolygonsDataFrame'. Other options are 'raster', which returns a raster brick; or 'SpatialPixelsDataFrame'
##' @return a SpatialPolygonsDataFrame in which Monte Carlo expectations can be stored and later plotted.
##' @export

getGrid <- function(mod,returnclass="SpatialPolygonsDataFrame"){

    if(mod$latentmode=="polygons"){
        shp <- mod$shape
        shp@data <- data.frame(ID=1:length(shp))
        return(shp)
    }

    if(inherits(mod$grid,"SpatialPolygonsDataFrame")){
        polys <- mod$grid
    }
    else if(!is.null(mod$xvals)){
        polys <- as(SpatialPixels(SpatialPoints(expand.grid(mod$xvals,mod$yvals)),proj4string=CRS(proj4string(mod$data))),"SpatialPolygons")
        polys <- SpatialPolygonsDataFrame(polys,data=data.frame(ID_from_grid=1:length(polys)),match.ID=FALSE)
    }
    else{
        stop("This is not a gridded analysis, cannot return computational grid")
    }

    if(returnclass=="SpatialPixelsDataFrame" | returnclass=="raster"){
        polys <- SpatialPixels(SpatialPoints(coordinates(polys)),proj4string=CRS(proj4string(mod$data)))
        polys <- SpatialPixelsDataFrame(polys,data=data.frame(ID_from_grid=1:length(polys)))
        if(returnclass=="raster"){
            polys <- brick(polys)
        }
    }

    return(polys)
}

Try the spatsurv package in your browser

Any scripts or data that you put into this service are public.

spatsurv documentation built on Oct. 19, 2023, 9:07 a.m.