hhh4_simulate_plot | R Documentation |
"hhh4"
Models
Arrays of simulated counts from simulate.hhh4
can be
visualized as final size boxplots, individual or average time series,
or fan charts (using the fanplot package).
An aggregate
-method is also available.
## S3 method for class 'hhh4sims'
plot(x, ...)
## S3 method for class 'hhh4sims'
aggregate(x, units = TRUE, time = FALSE, ..., drop = FALSE)
as.hhh4simslist(x, ...)
## S3 method for class 'hhh4simslist'
plot(x, type = c("size", "time", "fan"), ...,
groups = NULL, par.settings = list())
## S3 method for class 'hhh4simslist'
aggregate(x, units = TRUE, time = FALSE, ..., drop = FALSE)
plotHHH4sims_size(x, horizontal = TRUE, trafo = NULL, observed = TRUE,
names = base::names(x), ...)
plotHHH4sims_time(x, average = mean, individual = length(x) == 1,
conf.level = if (individual) 0.95 else NULL,
matplot.args = list(), initial.args = list(), legend = length(x) > 1,
xlim = NULL, ylim = NULL, add = FALSE, ...)
plotHHH4sims_fan(x, which = 1,
fan.args = list(), observed.args = list(), initial.args = list(),
means.args = NULL, key.args = NULL, xlim = NULL, ylim = NULL,
add = FALSE, xaxis = list(), ...)
x |
an object of class |
type |
a character string indicating the summary plot to produce. |
... |
further arguments passed to methods. |
groups |
an optional factor to produce stratified plots by groups of units.
The special setting |
par.settings |
a list of graphical parameters for |
horizontal |
a logical indicating if the boxplots of the final size distributions should be horizontal (the default). |
trafo |
an optional transformation function from the scales package, e.g.,
|
observed |
a logical indicating if a line and axis value for the observed size of the epidemic should be added to the plot. Alternatively, a list with graphical parameters can be specified to modify the default values. |
names |
a character vector of names for |
average |
scalar-valued function to apply to the simulated counts at each time point. |
individual |
a logical indicating if the individual simulations should be shown as well. |
conf.level |
a scalar in (0,1), which determines the level of the pointwise
quantiles obtained from the simulated counts at each time point.
A value of |
matplot.args |
a list of graphical parameters for |
initial.args |
if a list (of graphical parameters for |
legend |
a logical, a character vector (providing names for |
xlim , ylim |
vectors of length 2 determining the axis limits. |
add |
a logical indicating if the (mean) simulated time series or the fan chart, respectively, should be added to an existing plot. |
which |
a single integer or a character string selecting the model in
|
fan.args |
a list of graphical parameters for the |
observed.args |
if a list (of graphical parameters for |
means.args |
if a list (of graphical parameters for |
key.args |
if a list, a color key (in |
xaxis |
if a list of arguments for |
units |
a logical indicating aggregation over units. Can also be a factor
(or something convertible to a factor using |
time |
a logical indicating if the counts should be summed over the whole simulation period. |
drop |
a logical indicating if the unit dimension and the |
Sebastian Meyer
### univariate example
data("salmAllOnset")
## fit a hhh4 model to the first 13 years
salmModel <- list(end = list(f = addSeason2formula(~1 + t)),
ar = list(f = ~1), family = "NegBin1", subset = 2:678)
salmFit <- hhh4(salmAllOnset, salmModel)
## simulate the next 20 weeks ahead
salmSims <- simulate(salmFit, nsim = 300, seed = 3, subset = 678 + seq_len(20),
y.start = observed(salmAllOnset)[678,])
## compare final size distribution to observed value
summary(aggregate(salmSims, time = TRUE)) # summary of simulated values
plot(salmSims, type = "size")
## individual and average simulated time series with a confidence interval
plot(salmSims, type = "time", main = "20-weeks-ahead simulation")
## fan chart based on the quantiles of the simulated counts at each time point
## point forecasts are represented by a white line within the fan
if (requireNamespace("fanplot")) {
plot(salmSims, type = "fan", main = "20-weeks-ahead simulation",
fan.args = list(ln = 1:9/10), means.args = list())
}
### multivariate example
data("measlesWeserEms")
## fit a hhh4 model to the first year
measlesModel <- list(
end = list(f = addSeason2formula(~1), offset = population(measlesWeserEms)),
ar = list(f = ~1),
ne = list(f = ~1 + log(pop),
weights = W_powerlaw(maxlag = 5, normalize = TRUE)),
family = "NegBin1", subset = 2:52,
data = list(pop = population(measlesWeserEms)))
measlesFit1 <- hhh4(measlesWeserEms, control = measlesModel)
## use a Poisson distribution instead (just for comparison)
measlesFit2 <- update(measlesFit1, family = "Poisson")
## simulate realizations from these models during the second year
measlesSims <- lapply(X = list(NegBin = measlesFit1, Poisson = measlesFit2),
FUN = simulate, nsim = 50, seed = 1, subset = 53:104,
y.start = observed(measlesWeserEms)[52,])
## final size of the first model
plot(measlesSims[[1]])
## stratified by groups of districts
mygroups <- factor(substr(colnames(measlesWeserEms), 4, 4))
apply(aggregate(measlesSims[[1]], time = TRUE, units = mygroups), 1, summary)
plot(measlesSims[[1]], groups = mygroups)
## a class and plot-method for a list of simulations from different models
measlesSims <- as.hhh4simslist(measlesSims)
plot(measlesSims)
## simulated time series
plot(measlesSims, type = "time", individual = TRUE, ylim = c(0, 80))
## fan charts
if (requireNamespace("fanplot")) {
opar <- par(mfrow = c(2,1))
plot(measlesSims, type = "fan", which = 1, ylim = c(0, 80), main = "NegBin",
key.args = list())
plot(measlesSims, type = "fan", which = 2, ylim = c(0, 80), main = "Poisson")
par(opar)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.