View source: R/pairedbinCUSUM.R
pairedbinCUSUM | R Documentation |
CUSUM for paired binary data as described in Steiner et al. (1999).
pairedbinCUSUM(stsObj, control = list(range=NULL,theta0,theta1,
h1,h2,h11,h22))
pairedbinCUSUM.runlength(p,w1,w2,h1,h2,h11,h22, sparse=FALSE)
stsObj |
Object of class |
control |
Control object as a list containing several parameters.
|
p |
Vector giving the probability of the four different possible states, i.e. c((death=0,near-miss=0),(death=1,near-miss=0), (death=0,near-miss=1),(death=1,near-miss=1)). |
w1 |
The parameters |
w2 |
As for |
h1 |
decision barrier for 1st individual cusums |
h2 |
decision barrier for 2nd cusums |
h11 |
together with |
h22 |
together with |
sparse |
Boolean indicating whether to use sparse matrix
computations from the |
For details about the method see the Steiner et al. (1999) reference listed below. Basically, two individual CUSUMs are run each based on a logistic regression model. The combined CUSUM not only signals if one of its two individual CUSUMs signals, but also if the two CUSUMs simultaneously cross the secondary limits.
An sts
object with observed
, alarm
,
etc. slots trimmed to the control$range
indices.
S. Steiner and M. Höhle
Steiner, S. H., Cook, R. J., and Farewell, V. T. (1999), Monitoring paired binary surgical outcomes using cumulative sum charts, Statistics in Medicine, 18, pp. 69–86.
categoricalCUSUM
#Set in-control and out-of-control parameters as in paper
theta0 <- c(-2.3,-4.5,2.5)
theta1 <- c(-1.7,-2.9,2.5)
#Small helper function to compute the paired-binary likelihood
#of the length two vector yz when the true parameters are theta
dPBin <- function(yz,theta) {
exp(dbinom(yz[1],size=1,prob=plogis(theta[1]),log=TRUE) +
dbinom(yz[2],size=1,prob=plogis(theta[2]+theta[3]*yz[1]),log=TRUE))
}
#Likelihood ratio for all four possible configurations
p <- c(dPBin(c(0,0), theta=theta0), dPBin(c(0,1), theta=theta0),
dPBin(c(1,0), theta=theta0), dPBin(c(1,1), theta=theta0))
if (surveillance.options("allExamples"))
#Compute ARL using slow, non-sparse matrix operations
pairedbinCUSUM.runlength(p,w1=c(-1,37,-9,29),w2=c(-1,7),h1=70,h2=32,
h11=38,h22=17)
#Sparse computations can be considerably (!) faster
pairedbinCUSUM.runlength(p,w1=c(-1,37,-9,29),w2=c(-1,7),h1=70,h2=32,
h11=38,h22=17,sparse=TRUE)
#Use paired binary CUSUM on the De Leval et al. (1994) arterial switch
#operation data on 104 newborn babies
data("deleval")
#Switch between death and near misses
observed(deleval) <- observed(deleval)[,c(2,1)]
#Run paired-binary CUSUM without generating alarms.
pb.surv <- pairedbinCUSUM(deleval,control=list(theta0=theta0,
theta1=theta1,h1=Inf,h2=Inf,h11=Inf,h22=Inf))
plot(pb.surv, xaxis.labelFormat=NULL, ylab="CUSUM Statistic")
######################################################################
#Scale the plots so they become comparable to the plots in Steiner et
#al. (1999). To this end a small helper function is defined.
######################################################################
######################################################################
#Log LR for conditional specification of the paired model
######################################################################
LLR.pairedbin <- function(yz,theta0, theta1) {
#In control
alphay0 <- theta0[1] ; alphaz0 <- theta0[2] ; beta0 <- theta0[3]
#Out of control
alphay1 <- theta1[1] ; alphaz1 <- theta1[2] ; beta1 <- theta1[3]
#Likelihood ratios
llry <- (alphay1-alphay0)*yz[1]+log(1+exp(alphay0))-log(1+exp(alphay1))
llrz <- (alphaz1-alphaz0)*yz[2]+log(1+exp(alphaz0+beta0*yz[1]))-
log(1+exp(alphaz1+beta1*yz[1]))
return(c(llry=llry,llrz=llrz))
}
val <- expand.grid(0:1,0:1)
table <- t(apply(val,1, LLR.pairedbin, theta0=theta0, theta1=theta1))
w1 <- min(abs(table[,1]))
w2 <- min(abs(table[,2]))
S <- upperbound(pb.surv) / cbind(rep(w1,nrow(observed(pb.surv))),w2)
#Show results
opar <- par(mfcol=c(2,1))
plot(1:nrow(deleval),S[,1],type="l",main="Near Miss",xlab="Patient No.",
ylab="CUSUM Statistic")
lines(c(0,1e99), c(32,32),lty=2,col=2)
lines(c(0,1e99), c(17,17),lty=2,col=3)
plot(1:nrow(deleval),S[,2],type="l",main="Death",xlab="Patient No.",
ylab="CUSUM Statistic")
lines(c(0,1e99), c(70,70),lty=2,col=2)
lines(c(0,1e99), c(38,38),lty=2,col=3)
par(opar)
######################################################################
# Run the CUSUM with thresholds as in Steiner et al. (1999).
# After each alarm the CUSUM statistic is set to zero and
# monitoring continues from this point. Triangles indicate alarm
# in the respective CUSUM (nearmiss or death). If in both
# simultaneously then an alarm is caused by the secondary limits.
######################################################################
pb.surv2 <- pairedbinCUSUM(deleval,control=list(theta0=theta0,
theta1=theta1,h1=70*w1,h2=32*w2,h11=38*w1,h22=17*w2))
plot(pb.surv2, xaxis.labelFormat=NULL)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.