twinstim_profile | R Documentation |
twinstim
objects
Function to compute estimated and profile likelihood based confidence
intervals for twinstim
objects. Computations might be cumbersome!
WARNING: the implementation is not well tested, simply uses
optim
(ignoring optimizer settings from the original fit),
and does not return the complete set of coefficients at each grid point.
## S3 method for class 'twinstim'
profile(fitted, profile, alpha = 0.05,
control = list(fnscale = -1, maxit = 100, trace = 1),
do.ltildeprofile=FALSE, ...)
fitted |
an object of class |
profile |
a list with elements being numeric vectors of length 4. These vectors must
have the form
|
alpha |
|
control |
control object to use in |
do.ltildeprofile |
If |
... |
unused (argument of the generic). |
list with profile log-likelihood evaluations on the grid, and
– not implemented yet –
highest likelihood and Wald confidence intervals.
The argument profile
is also returned.
Michael Höhle
# profiling takes a while
## Not run:
#Load the twinstim model fitted to the IMD data
data("imdepi", "imdepifit")
# for profiling we need the model environment
imdepifit <- update(imdepifit, model=TRUE)
#Generate profiling object for a list of parameters for the new model
names <- c("h.(Intercept)","e.typeC")
coefList <- lapply(names, function(name) {
c(pmatch(name,names(coef(imdepifit))),NA,NA,11)
})
#Profile object (necessary to specify a more loose convergence
#criterion). Speed things up by using do.ltildeprofile=FALSE (the default)
prof <- profile(imdepifit, coefList,
control=list(reltol=0.1, REPORT=1), do.ltildeprofile=TRUE)
#Plot result for one variable
par(mfrow=c(1,2))
for (name in names) {
with(as.data.frame(prof$lp[[name]]),
matplot(grid,cbind(profile,estimated,wald),
type="l",xlab=name,ylab="loglik"))
legend(x="bottomleft",c("profile","estimated","wald"),lty=1:3,col=1:3)
}
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.