Nothing
#' Template: Kaplan-Meier Plot
#'
#' Creates a valid expression to generate a Kaplan-Meier plot.
#'
#' @inheritParams template_arguments
#' @inheritParams tern::g_km
#' @inheritParams tern::control_coxreg
#' @param facet_var (`character`)\cr name of the variable to use to facet the plot.
#'
#' @inherit template_arguments return
#'
#' @seealso [tm_g_km()]
#'
#' @keywords internal
template_g_km <- function(dataname = "ANL",
arm_var = "ARM",
ref_arm = NULL,
comp_arm = NULL,
compare_arm = FALSE,
combine_comp_arms = FALSE,
aval_var = "AVAL",
cnsr_var = "CNSR",
xticks = NULL,
strata_var = NULL,
time_points = NULL,
facet_var = "SEX",
font_size = 11,
conf_level = 0.95,
ties = "efron",
xlab = "Survival time",
time_unit_var = "AVALU",
yval = "Survival",
ylim = NULL,
pval_method = "log-rank",
annot_surv_med = TRUE,
annot_coxph = TRUE,
control_annot_surv_med = control_surv_med_annot(),
control_annot_coxph = control_coxph_annot(x = 0.27, y = 0.35, w = 0.3),
legend_pos = NULL,
position_coxph = lifecycle::deprecated(),
width_annots = lifecycle::deprecated(),
rel_height_plot = 0.80,
ci_ribbon = FALSE,
title = "KM Plot") {
if (lifecycle::is_present(position_coxph)) {
control_annot_coxph[["x"]] <- position_coxph[1]
control_annot_coxph[["y"]] <- position_coxph[2]
lifecycle::deprecate_warn(
"0.8.17",
"template_g_km(position_coxph)",
details = "Please use the 'x' and 'y' elements of the `control_annot_coxph` argument instead."
)
}
if (lifecycle::is_present(width_annots)) {
control_annot_surv_med[["w"]] <- width_annots[["surv_med"]]
control_annot_coxph[["w"]] <- width_annots[["coxph"]]
lifecycle::deprecate_warn(
"0.8.17",
"template_g_km(width_annots)",
details = paste(
"Please use the 'w' element of the `control_annot_surv_med`",
"and `control_annot_coxph` arguments instead."
)
)
}
checkmate::assert_string(dataname)
checkmate::assert_string(arm_var)
checkmate::assert_string(aval_var)
checkmate::assert_string(cnsr_var)
checkmate::assert_string(time_unit_var)
checkmate::assert_flag(compare_arm)
checkmate::assert_flag(combine_comp_arms)
checkmate::assert_numeric(xticks, null.ok = TRUE)
checkmate::assert_string(title)
checkmate::assert_number(font_size)
checkmate::assert_number(rel_height_plot, lower = 0, upper = 1)
ref_arm_val <- paste(ref_arm, collapse = "/")
y <- list()
data_list <- list()
data_list <- add_expr(
data_list,
prepare_arm(
dataname = dataname,
arm_var = arm_var,
ref_arm = ref_arm,
comp_arm = comp_arm,
compare_arm = compare_arm,
ref_arm_val = ref_arm_val
)
)
data_list <- add_expr(
data_list,
substitute(
expr = dplyr::mutate(
is_event = cnsr_var == 0
),
env = list(
anl = as.name(dataname),
cnsr_var = as.name(cnsr_var)
)
)
)
if (compare_arm && combine_comp_arms) {
comp_arm_val <- paste(comp_arm, collapse = "/")
data_list <- add_expr(
data_list,
substitute_names(
expr = dplyr::mutate(arm_var = combine_levels(arm_var, levels = comp_arm, new_level = comp_arm_val)),
names = list(arm_var = as.name(arm_var)),
others = list(comp_arm = comp_arm, comp_arm_val = comp_arm_val)
)
)
}
y$data <- substitute(
expr = {
anl <- data_pipe
},
env = list(
data_pipe = pipe_expr(data_list)
)
)
y$variables <- if (length(strata_var) != 0) {
substitute(
expr = variables <- list(tte = tte, is_event = "is_event", arm = arm, strata = strata_var),
env = list(tte = aval_var, arm = arm_var, strata_var = strata_var)
)
} else {
substitute(
expr = variables <- list(tte = tte, is_event = "is_event", arm = arm),
env = list(tte = aval_var, arm = arm_var)
)
}
graph_list <- list()
if (length(facet_var) != 0L) {
graph_list <- add_expr(
graph_list,
substitute(
expr = {
facets <- droplevels(anl$facet_var)
anl <- split(anl, f = facets)
},
env = list(
facet_var = as.name(facet_var)
)
)
)
} else {
graph_list <- add_expr(
graph_list,
substitute(
expr = {
facets <- NULL
anl <- list(anl)
}
)
)
}
graph_list <- add_expr(
graph_list,
substitute(
expr = {
g_km_counter_generator <- function() {
plot_number <- 0L
function(x) {
plot_number <<- plot_number + 1L
g_km(
x,
variables = variables,
control_surv = control_surv_timepoint(conf_level = conf_level),
xticks = xticks,
xlab = sprintf(
"%s (%s)",
xlab,
gsub("(^|[[:space:]])([[:alpha:]])", "\\1\\U\\2", tolower(x$time_unit_var[1]), perl = TRUE)
),
yval = yval,
ylim = ylim,
title = sprintf(
"%s%s",
sprintf(
"%s%s",
title,
if (!is.null(facets)) {
sprintf(", %s = %s", as.character(quote(facet_var)), unique(x[[as.character(quote(facet_var))]]))
} else {
""
}
),
if (length(strata_var) != 0) {
sprintf("\nStratified by %s", toString(strata_var))
} else {
""
}
),
footnotes = if (annot_coxph) {
paste(
"Ties for Coxph (Hazard Ratio):", ties, "\n",
"p-value Method for Coxph (Hazard Ratio):", pval_method
)
},
font_size = font_size,
ci_ribbon = ci_ribbon,
annot_surv_med = annot_surv_med,
annot_coxph = annot_coxph,
control_coxph_pw = control_coxph(conf_level = conf_level, pval_method = pval_method, ties = ties),
control_annot_surv_med = control_annot_surv_med,
control_annot_coxph = control_annot_coxph,
legend_pos = legend_pos,
rel_height_plot = rel_height_plot
)
}
}
g_km_counter <- g_km_counter_generator()
plot_list <- lapply(
anl,
g_km_counter
)
plot <- cowplot::plot_grid(
plotlist = plot_list,
ncol = 1
)
},
env = list(
facet_var = if (length(facet_var) != 0L) as.name(facet_var),
font_size = font_size,
strata_var = strata_var,
xticks = xticks,
xlab = xlab,
time_unit_var = as.name(time_unit_var),
yval = yval,
ylim = ylim,
conf_level = conf_level,
pval_method = pval_method,
annot_surv_med = annot_surv_med,
annot_coxph = annot_coxph,
control_annot_surv_med = control_annot_surv_med,
control_annot_coxph = control_annot_coxph,
legend_pos = legend_pos,
ties = ties,
ci_ribbon = ci_ribbon,
rel_height_plot = rel_height_plot,
title = title
)
)
)
y$graph <- bracket_expr(graph_list)
y
}
#' teal Module: Kaplan-Meier Plot
#'
#' This module produces a `ggplot`-style Kaplan-Meier plot for data with ADaM structure.
#'
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_g_km
#' @param facet_var ([teal.transform::choices_selected()])\cr object with
#' all available choices and preselected option for names of variable that can be used for plot faceting.
#'
#' @inherit module_arguments return seealso
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `plot` (`ggplot`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_g_km(
#' ..., # arguments for module
#' decorators = list(
#' plot = teal_transform_module(...) # applied only to `plot` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' library(nestcolor)
#'
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl
#' ADTTE <- tmc_ex_adtte
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' ADSL <- data[["ADSL"]]
#' ADTTE <- data[["ADTTE"]]
#'
#' arm_ref_comp <- list(
#' ACTARMCD = list(
#' ref = "ARM B",
#' comp = c("ARM A", "ARM C")
#' ),
#' ARM = list(
#' ref = "B: Placebo",
#' comp = c("A: Drug X", "C: Combination")
#' )
#' )
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_g_km(
#' label = "Kaplan-Meier Plot",
#' dataname = "ADTTE",
#' arm_var = choices_selected(
#' variable_choices(ADSL, c("ARM", "ARMCD", "ACTARMCD")),
#' "ARM"
#' ),
#' paramcd = choices_selected(
#' value_choices(ADTTE, "PARAMCD", "PARAM"),
#' "OS"
#' ),
#' arm_ref_comp = arm_ref_comp,
#' strata_var = choices_selected(
#' variable_choices(ADSL, c("SEX", "BMRKR2")),
#' "SEX"
#' ),
#' facet_var = choices_selected(
#' variable_choices(ADSL, c("SEX", "BMRKR2")),
#' NULL
#' )
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
tm_g_km <- function(label,
dataname,
parentname = ifelse(
inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var),
"ADSL"
),
arm_var,
arm_ref_comp = NULL,
paramcd,
strata_var,
facet_var,
time_unit_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "AVALU"), "AVALU",
fixed = TRUE
),
aval_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "AVAL"), "AVAL",
fixed = TRUE
),
cnsr_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "CNSR"), "CNSR",
fixed = TRUE
),
conf_level = teal.transform::choices_selected(c(0.95, 0.9, 0.8), 0.95, keep_order = TRUE),
font_size = c(11L, 1L, 30),
control_annot_surv_med = control_surv_med_annot(),
control_annot_coxph = control_coxph_annot(x = 0.27, y = 0.35, w = 0.3),
legend_pos = c(0.9, 0.5),
rel_height_plot = c(80L, 0L, 100L),
plot_height = c(800L, 400L, 5000L),
plot_width = NULL,
pre_output = NULL,
post_output = NULL,
transformators = list(),
decorators = list()) {
message("Initializing tm_g_km")
checkmate::assert_string(label)
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_class(arm_var, "choices_selected")
checkmate::assert_class(paramcd, "choices_selected")
checkmate::assert_class(strata_var, "choices_selected")
checkmate::assert_class(facet_var, "choices_selected")
checkmate::assert_class(time_unit_var, "choices_selected")
checkmate::assert_class(aval_var, "choices_selected")
checkmate::assert_class(cnsr_var, "choices_selected")
checkmate::assert_class(conf_level, "choices_selected")
checkmate::assert_numeric(plot_height, len = 3, any.missing = FALSE, finite = TRUE)
checkmate::assert_numeric(plot_height[1], lower = plot_height[2], upper = plot_height[3], .var.name = "plot_height")
checkmate::assert_numeric(plot_width, len = 3, any.missing = FALSE, null.ok = TRUE, finite = TRUE)
checkmate::assert_numeric(
plot_width[1],
lower = plot_width[2], upper = plot_width[3], null.ok = TRUE, .var.name = "plot_width"
)
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
assert_decorators(decorators, "plot")
args <- as.list(environment())
data_extract_list <- list(
arm_var = cs_to_des_select(arm_var, dataname = parentname),
paramcd = cs_to_des_filter(paramcd, dataname = dataname),
strata_var = cs_to_des_select(strata_var, dataname = parentname, multiple = TRUE),
facet_var = cs_to_des_select(facet_var, dataname = parentname, multiple = FALSE),
aval_var = cs_to_des_select(aval_var, dataname = dataname),
cnsr_var = cs_to_des_select(cnsr_var, dataname = dataname),
time_unit_var = cs_to_des_select(time_unit_var, dataname = dataname)
)
module(
label = label,
server = srv_g_km,
ui = ui_g_km,
ui_args = c(data_extract_list, args),
server_args = c(
data_extract_list,
list(
dataname = dataname,
label = label,
parentname = parentname,
arm_ref_comp = arm_ref_comp,
plot_height = plot_height,
plot_width = plot_width,
control_annot_surv_med = control_annot_surv_med,
control_annot_coxph = control_annot_coxph,
legend_pos = legend_pos,
decorators = decorators
)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
#' @keywords internal
ui_g_km <- function(id, ...) {
a <- list(...)
is_single_dataset_value <- teal.transform::is_single_dataset(
a$arm_var,
a$paramcd,
a$strata_var,
a$facet_var,
a$aval_var,
a$cnsr_var,
a$time_unit_var
)
ns <- NS(id)
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(
verbatimTextOutput(outputId = ns("text")),
teal.widgets::plot_with_settings_ui(
id = ns("myplot")
)
),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(a[c("arm_var", "paramcd", "strata_var", "facet_var", "aval_var", "cnsr_var")]),
teal.transform::data_extract_ui(
id = ns("paramcd"),
label = "Select Endpoint",
data_extract_spec = a$paramcd,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("aval_var"),
label = "Analysis Variable",
data_extract_spec = a$aval_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("cnsr_var"),
label = "Censor Variable",
data_extract_spec = a$cnsr_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("facet_var"),
label = "Facet Plots by",
data_extract_spec = a$facet_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("arm_var"),
label = "Select Treatment Variable",
data_extract_spec = a$arm_var,
is_single_dataset = is_single_dataset_value
),
tags$div(
class = "arm-comp-box",
tags$label("Compare Treatments"),
shinyWidgets::switchInput(
inputId = ns("compare_arms"),
value = !is.null(a$arm_ref_comp),
size = "mini"
),
conditionalPanel(
condition = paste0("input['", ns("compare_arms"), "']"),
tags$div(
uiOutput(
ns("arms_buckets"),
title = paste(
"Multiple reference groups are automatically combined into a single group when more than one",
"value is selected."
)
),
checkboxInput(
ns("combine_comp_arms"),
"Combine all comparison groups?",
value = FALSE
),
teal.transform::data_extract_ui(
id = ns("strata_var"),
label = "Stratify by",
data_extract_spec = a$strata_var,
is_single_dataset = is_single_dataset_value
)
)
)
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(a$decorators, "plot")),
conditionalPanel(
condition = paste0("input['", ns("compare_arms"), "']"),
teal.widgets::panel_group(
teal.widgets::panel_item(
"Comparison settings",
radioButtons(
ns("pval_method_coxph"),
label = HTML(
paste(
"p-value method for ",
tags$span(class = "text-primary", "Coxph"),
" (Hazard Ratio)",
sep = ""
)
),
choices = c("wald", "log-rank", "likelihood"),
selected = "log-rank"
),
radioButtons(
ns("ties_coxph"),
label = HTML(
paste(
"Ties for ",
tags$span(class = "text-primary", "Coxph"),
" (Hazard Ratio)",
sep = ""
)
),
choices = c("exact", "breslow", "efron"),
selected = "exact"
)
)
)
),
teal.widgets::panel_group(
teal.widgets::panel_item(
"Additional plot settings",
textInput(
inputId = ns("xticks"),
label = "Specify break intervals for x-axis e.g. 0 ; 500"
),
radioButtons(
ns("yval"),
tags$label("Value on y-axis", class = "text-primary"),
choices = c("Survival probability", "Failure probability"),
selected = c("Survival probability"),
),
teal.widgets::optionalSliderInput(
ns("ylim"),
tags$label("y-axis limits", class = "text-primary"),
value = c(0, 1),
min = 0, max = 1
),
teal.widgets::optionalSliderInputValMinMax(
ns("font_size"),
"Table Font Size",
a$font_size,
ticks = FALSE, step = 1
),
teal.widgets::optionalSliderInputValMinMax(
ns("rel_height_plot"),
"Relative Height of Plot (%)",
a$rel_height_plot,
ticks = FALSE, step = 1
),
checkboxInput(
inputId = ns("show_ci_ribbon"),
label = "Show CI ribbon",
value = FALSE,
width = "100%"
),
checkboxInput(
inputId = ns("show_km_table"),
label = "Show KM table",
value = TRUE,
width = "100%"
),
teal.widgets::optionalSelectInput(
ns("conf_level"),
"Level of Confidence",
a$conf_level$choices,
a$conf_level$selected,
multiple = FALSE,
fixed = a$conf_level$fixed
),
textInput(ns("xlab"), "X-axis label", "Time"),
teal.transform::data_extract_ui(
id = ns("time_unit_var"),
label = "Time Unit Variable",
data_extract_spec = a$time_unit_var,
is_single_dataset = is_single_dataset_value
)
)
)
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
),
pre_output = a$pre_output,
post_output = a$post_output
)
}
#' @keywords internal
srv_g_km <- function(id,
data,
reporter,
filter_panel_api,
dataname,
parentname,
paramcd,
arm_var,
arm_ref_comp,
strata_var,
facet_var,
aval_var,
cnsr_var,
label,
time_unit_var,
plot_height,
plot_width,
control_annot_surv_med,
control_annot_coxph,
legend_pos,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
# Setup arm variable selection, default reference arms and default
# comparison arms for encoding panel
iv_arm_ref <- arm_ref_comp_observer(
session,
input,
output,
id_arm_var = extract_input("arm_var", parentname),
data = data()[[parentname]],
arm_ref_comp = arm_ref_comp,
module = "tm_t_tte",
on_off = reactive(input$compare_arms)
)
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list(
aval_var = aval_var,
cnsr_var = cnsr_var,
arm_var = arm_var,
paramcd = paramcd,
strata_var = strata_var,
facet_var = facet_var,
time_unit_var = time_unit_var
),
datasets = data,
select_validation_rule = list(
aval_var = shinyvalidate::sv_required("An analysis variable is required"),
cnsr_var = shinyvalidate::sv_required("A censor variable is required"),
arm_var = shinyvalidate::sv_required("A treatment variable is required")
),
filter_validation_rule = list(
paramcd = shinyvalidate::sv_required("An endpoint is required")
)
)
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
if (isTRUE(input$compare_arms)) {
iv$add_validator(iv_arm_ref)
}
iv$add_rule("font_size", shinyvalidate::sv_required("Plot tables font size must be greater than or equal to 5"))
iv$add_rule("font_size", shinyvalidate::sv_gte(5, "Plot tables font size must be greater than or equal to 5"))
iv$add_rule("ylim", shinyvalidate::sv_required("Please choose a range for y-axis limits"))
iv$add_rule("conf_level", shinyvalidate::sv_required("Please choose a confidence level"))
iv$add_rule(
"conf_level",
shinyvalidate::sv_between(
0, 1,
inclusive = c(FALSE, FALSE),
message_fmt = "Confidence level must be between 0 and 1"
)
)
iv$add_rule("xticks", shinyvalidate::sv_optional())
iv$add_rule(
"xticks",
function(value) {
val <- as_numeric_from_comma_sep_str(value, sep = ";")
if (anyNA(val) || any(val < 0)) {
"All break intervals for x-axis must be non-negative numbers separated by semicolons"
} else if (all(val == 0)) {
"At least one break interval for x-axis must be > 0"
}
}
)
teal.transform::compose_and_enable_validators(iv, selector_list)
})
anl_inputs <- teal.transform::merge_expression_srv(
datasets = data,
selector_list = selector_list,
merge_function = "dplyr::inner_join"
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(code = as.expression(anl_inputs()$expr))
})
validate_checks <- reactive({
teal::validate_inputs(iv_r())
adsl_filtered <- anl_q()[[parentname]]
anl_filtered <- anl_q()[[dataname]]
anl_m <- anl_inputs()
input_arm_var <- as.vector(anl_m$columns_source$arm_var)
input_strata_var <- as.vector(anl_m$columns_source$strata_var)
input_facet_var <- as.vector(anl_m$columns_source$facet_var)
input_aval_var <- as.vector(anl_m$columns_source$aval_var)
input_cnsr_var <- as.vector(anl_m$columns_source$cnsr_var)
input_paramcd <- unlist(paramcd$filter)["vars_selected"]
input_time_unit_var <- as.vector(anl_m$columns_source$time_unit_var)
# validate inputs
validate_args <- list(
adsl = adsl_filtered,
adslvars = c("USUBJID", "STUDYID", input_arm_var, input_strata_var, input_facet_var),
anl = anl_filtered,
anlvars = c("USUBJID", "STUDYID", input_paramcd, input_aval_var, input_cnsr_var, input_time_unit_var),
arm_var = input_arm_var
)
# validate arm levels
if (length(input_arm_var) > 0 && length(unique(adsl_filtered[[input_arm_var]])) == 1) {
validate_args <- append(validate_args, list(min_n_levels_armvar = NULL))
}
if (isTRUE(input$compare_arms)) {
validate_args <- append(
validate_args,
list(ref_arm = unlist(input$buckets$Ref), comp_arm = unlist(input$buckets$Comp))
)
}
do.call(what = "validate_standard_inputs", validate_args)
NULL
})
all_q <- reactive({
validate_checks()
anl_m <- anl_inputs()
anl <- anl_q()[["ANL"]]
teal::validate_has_data(anl, 2)
input_xticks <- if (!is.null(input$xticks)) {
as_numeric_from_comma_sep_str(input$xticks, sep = ";")
}
input_paramcd <- as.character(unique(anl[[as.vector(anl_m$columns_source$paramcd)]]))
title <- paste("KM Plot of", input_paramcd)
my_calls <- template_g_km(
dataname = "ANL",
arm_var = as.vector(anl_m$columns_source$arm_var),
ref_arm = unlist(input$buckets$Ref),
comp_arm = unlist(input$buckets$Comp),
compare_arm = input$compare_arms,
combine_comp_arms = input$combine_comp_arms,
aval_var = as.vector(anl_m$columns_source$aval_var),
cnsr_var = as.vector(anl_m$columns_source$cnsr_var),
strata_var = as.vector(anl_m$columns_source$strata_var),
time_points = NULL,
time_unit_var = as.vector(anl_m$columns_source$time_unit_var),
facet_var = as.vector(anl_m$columns_source$facet_var),
annot_surv_med = input$show_km_table,
annot_coxph = input$compare_arms,
control_annot_surv_med = control_annot_surv_med,
control_annot_coxph = control_annot_coxph,
legend_pos = legend_pos,
xticks = input_xticks,
font_size = input$font_size,
pval_method = input$pval_method_coxph,
conf_level = as.numeric(input$conf_level),
ties = input$ties_coxph,
xlab = input$xlab,
yval = ifelse(input$yval == "Survival probability", "Survival", "Failure"),
ylim = input$ylim,
rel_height_plot = input$rel_height_plot / 100,
ci_ribbon = input$show_ci_ribbon,
title = title
)
teal.code::eval_code(anl_q(), as.expression(unlist(my_calls)))
})
decorated_all_q <- srv_decorate_teal_data(
id = "decorator",
data = all_q,
decorators = select_decorators(decorators, "plot"),
expr = print(plot)
)
plot_r <- reactive(decorated_all_q()[["plot"]])
# Insert the plot into a plot with settings module from teal.widgets
pws <- teal.widgets::plot_with_settings_srv(
id = "myplot",
plot_r = plot_r,
height = plot_height,
width = plot_width
)
# Render R code
source_code_r <- reactive(teal.code::get_code(req(decorated_all_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = label
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Kaplan Meier Plot",
label = label,
description = "Non-parametric method used to estimate the survival function from lifetime data",
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Plot", "header3")
card$append_plot(plot_r(), dim = pws$dim())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.