Nothing
#' Template: ANCOVA Summary
#'
#' Creates a valid expression to generate an analysis of variance summary table.
#'
#' @inheritParams template_arguments
#' @param paramcd_levels (`character`)\cr
#' variable levels for the studied parameter.
#' @param paramcd_var (`character`)\cr
#' variable name for the studied parameter.
#' @param visit_levels (`character`)\cr
#' variable levels for studied visits.
#' @param label_aval (`character`)\cr
#' label of value variable used for title rendering.
#' @param label_paramcd (`character`)\cr
#' variable label used for title rendering.
#' @param interact_var (`character`)\cr name of the variable that should have interactions with arm. If the
#' interaction is not needed, the default option is `NULL`.
#' @param interact_y (`character`)\cr a selected item from the `interact_var` column which will be used to select the
#' specific ANCOVA results. If the interaction is not needed, the default option is `FALSE`.
#'
#' @inherit template_arguments return
#'
#' @seealso [tm_t_ancova()]
#'
#' @keywords internal
template_ancova <- function(dataname = "ANL",
parentname = "ADSL",
arm_var,
ref_arm = NULL,
comp_arm = NULL,
combine_comp_arms = FALSE,
aval_var,
label_aval = NULL,
cov_var,
include_interact = FALSE,
interact_var = NULL,
interact_y = FALSE,
paramcd_levels = "",
paramcd_var = "PARAMCD",
label_paramcd = NULL,
visit_levels = "",
visit_var = "AVISIT",
conf_level = 0.95,
basic_table_args = teal.widgets::basic_table_args()) {
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_string(arm_var)
checkmate::assert_string(label_aval, null.ok = TRUE)
checkmate::assert_flag(combine_comp_arms)
checkmate::assert_string(aval_var)
checkmate::assert_character(cov_var)
checkmate::assert_flag(include_interact)
if (!isFALSE(interact_y)) checkmate::assert_character(interact_y)
checkmate::assert_string(interact_var, null.ok = TRUE)
y <- list()
if (include_interact && !any(interact_y == "") && !is.null(interact_var)) {
cov_var <- c(cov_var, paste0(arm_var, "*", interact_var))
}
if (length(cov_var) == 0) {
cov_var <- NULL
}
# Data processing.
data_list <- list()
anl_list <- list()
parent_list <- list()
ref_arm_val <- paste(ref_arm, collapse = "/")
anl_list <- add_expr(
anl_list,
prepare_arm(
dataname = dataname,
arm_var = arm_var,
ref_arm = ref_arm,
comp_arm = comp_arm,
ref_arm_val = ref_arm_val,
drop = FALSE
)
)
anl_list <- add_expr(anl_list, quote(droplevels()))
parent_list <- add_expr(
parent_list,
prepare_arm(
dataname = parentname,
arm_var = arm_var,
ref_arm = ref_arm,
comp_arm = comp_arm,
ref_arm_val = ref_arm_val,
drop = FALSE
)
)
parent_list <- add_expr(parent_list, quote(droplevels()))
if (combine_comp_arms) {
anl_list <- add_expr(
anl_list,
substitute_names(
expr = dplyr::mutate(arm_var = combine_levels(arm_var, levels = comp_arm)),
names = list(arm_var = as.name(arm_var)),
others = list(comp_arm = comp_arm)
)
)
parent_list <- add_expr(
parent_list,
substitute_names(
expr = dplyr::mutate(arm_var = combine_levels(arm_var, levels = comp_arm)),
names = list(arm_var = as.name(arm_var)),
others = list(comp_arm = comp_arm)
)
)
}
anl_list <- add_expr(anl_list, quote(df_explicit_na(na_level = default_na_str())))
parent_list <- add_expr(parent_list, quote(df_explicit_na(na_level = default_na_str())))
data_list <- add_expr(
data_list,
substitute(
anl <- anl_list,
env = list(
anl = as.name(dataname),
anl_list = pipe_expr(anl_list)
)
)
)
data_list <- add_expr(
data_list,
substitute(
parent <- parent_list,
env = list(
parent = as.name(parentname),
parent_list = pipe_expr(parent_list)
)
)
)
y$data <- bracket_expr(data_list)
# Build layout.
visits_title <- if (length(visit_levels) > 1) {
paste(
paste(utils::head(visit_levels, -1), collapse = ", "),
"and", utils::tail(visit_levels, 1)
)
} else if (length(visit_levels) == 1) {
visit_levels
} else {
""
}
table_title <- if (length(label_paramcd) > 1) {
paste(
"Summary of Analysis of Variance for", paste(label_paramcd, collapse = " and "),
"at", visits_title, "for", label_aval
)
} else if (length(label_paramcd == 1)) {
paste("Summary of Analysis of Variance for", label_paramcd, "at", visits_title, "for", label_aval)
} else {
""
}
parsed_basic_table_args <- teal.widgets::parse_basic_table_args(
teal.widgets::resolve_basic_table_args(
user_table = basic_table_args,
module_table = teal.widgets::basic_table_args(show_colcounts = TRUE, title = table_title)
)
)
y$layout_prep <- quote(split_fun <- drop_split_levels)
layout_list <- list()
layout_list <- add_expr(
layout_list,
parsed_basic_table_args
)
layout_list <- add_expr(
layout_list,
substitute(
expr = rtables::split_cols_by(var = arm_var, ref_group = ref_group) %>%
rtables::split_rows_by(
visit_var,
split_fun = split_fun,
label_pos = "topleft",
split_label = teal.data::col_labels(dataname[visit_var], fill = TRUE)
),
env = list(
arm_var = arm_var,
ref_group = paste(ref_arm, collapse = "/"),
visit_var = visit_var,
dataname = as.name(dataname)
)
)
)
if (length(paramcd_levels) > 1) {
layout_list <- add_expr(
layout_list,
substitute(
rtables::split_rows_by(
paramcd_var,
split_fun = split_fun,
label_pos = "topleft",
split_label = teal.data::col_labels(dataname[paramcd_var], fill = TRUE)
),
env = list(
paramcd_var = paramcd_var,
dataname = as.name(dataname)
)
)
)
} else {
layout_list <- add_expr(
layout_list,
substitute(
rtables::append_topleft(paste0(" ", paramcd_levels)),
env = list(
paramcd_levels = paramcd_levels
)
)
)
}
if (!include_interact) {
if (length(paramcd_levels) > 1) {
if (length(cov_var) == 0) {
ls_lbls <- c(lsmean = "Unadjusted Mean", lsmean_diff = "Difference in Unadjusted Means")
var_lbls <- "Unadjusted mean"
} else {
ls_lbls <- NULL
var_lbls <- "Adjusted mean"
}
layout_list <- add_expr(
layout_list,
substitute(
summarize_ancova(
vars = aval_var,
variables = list(arm = arm_var, covariates = cov_var),
conf_level = conf_level,
var_labels = var_labels,
show_labels = "hidden",
.labels = ls_labels
),
env = list(
aval_var = aval_var,
arm_var = arm_var,
cov_var = cov_var,
conf_level = conf_level,
var_labels = var_lbls,
ls_labels = ls_lbls
)
)
)
} else {
# Only one entry in `paramcd_levels` here.
layout_list <- add_expr(
layout_list,
substitute(
summarize_ancova(
vars = aval_var,
variables = list(arm = arm_var, covariates = NULL),
conf_level = conf_level,
var_labels = "Unadjusted comparison",
.labels = c(lsmean = "Mean", lsmean_diff = "Difference in Means"),
table_names = "unadjusted_comparison"
),
env = list(
aval_var = aval_var,
arm_var = arm_var,
conf_level = conf_level
)
)
)
if (length(cov_var) > 0) {
layout_list <- add_expr(
layout_list,
substitute(
summarize_ancova(
vars = aval_var,
variables = list(arm = arm_var, covariates = cov_var),
conf_level = conf_level,
var_labels = paste0(
"Adjusted comparison (", paste(cov_var, collapse = " + "), ")"
),
table_names = "adjusted_comparison"
),
env = list(
aval_var = aval_var,
arm_var = arm_var,
cov_var = cov_var,
conf_level = conf_level
)
)
)
}
}
} else {
cts_interact <- all(interact_y == FALSE)
layout_list <- add_expr(
layout_list,
substitute(
rtables::append_topleft(paste0(" Interaction Variable: ", interact_var)),
env = list(
interact_var = interact_var
)
)
)
for (int_y in interact_y) {
if (length(paramcd_levels) > 1) {
layout_list <- add_expr(
layout_list,
substitute(
summarize_ancova(
vars = aval_var,
variables = list(arm = arm_var, covariates = cov_var),
conf_level = conf_level,
var_labels = paste("Interaction Level:", interact_y),
show_labels = if (cts_interact) "hidden" else "visible",
interaction_y = interact_y,
interaction_item = interact_var
),
env = list(
aval_var = aval_var,
arm_var = arm_var,
cov_var = cov_var,
conf_level = conf_level,
interact_y = int_y,
interact_var = interact_var,
cts_interact = cts_interact
)
)
)
} else {
# Only one entry in `paramcd_levels` here.
if (int_y == interact_y[1]) {
layout_list <- add_expr(
layout_list,
substitute(
summarize_ancova(
vars = aval_var,
variables = list(arm = arm_var, covariates = NULL),
conf_level = conf_level,
var_labels = "Unadjusted comparison",
.labels = c(lsmean = "Mean", lsmean_diff = "Difference in Means"),
table_names = "unadjusted_comparison"
),
env = list(
aval_var = aval_var,
arm_var = arm_var,
cov_var = cov_var,
conf_level = conf_level
)
)
)
}
if (length(cov_var) > 0) {
layout_list <- add_expr(
layout_list,
substitute(
summarize_ancova(
vars = aval_var,
variables = list(arm = arm_var, covariates = cov_var),
conf_level = conf_level,
var_labels = if (cts_interact) {
paste0("Adjusted comparison (", paste(cov_var, collapse = " + "), ")")
} else {
paste0(
"Adjusted comparison (", paste(cov_var, collapse = " + "),
"), Interaction Level: ", interact_y
)
},
table_names = "adjusted_comparison",
interaction_y = interact_y,
interaction_item = interact_var
),
env = list(
aval_var = aval_var,
arm_var = arm_var,
cov_var = cov_var,
conf_level = conf_level,
interact_y = int_y,
interact_var = interact_var,
cts_interact = cts_interact
)
)
)
}
}
}
}
y$layout <- substitute(
expr = lyt <- layout_pipe,
env = list(layout_pipe = pipe_expr(layout_list))
)
# Build table.
y$table <- substitute(
expr = {
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = parent)
},
env = list(
anl = as.name(dataname),
parent = as.name(parentname)
)
)
y
}
#' teal Module: ANCOVA Summary
#'
#' This module produces a table to summarize analysis of variance, consistent with the TLG Catalog
#' template for `AOVT01` available [here](
#' https://insightsengineering.github.io/tlg-catalog/stable/tables/efficacy/aovt01.html) when multiple
#' endpoints are selected.
#'
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_ancova
#'
#' @inherit module_arguments return
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `table` (`TableTree` - output of `rtables::build_table()`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_t_ancova(
#' ..., # arguments for module
#' decorators = list(
#' table = teal_transform_module(...) # applied only to `table` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @details
#' When a single endpoint is selected, both unadjusted and adjusted comparison are provided. This modules
#' expects that the analysis data has the following variables:
#'
#' * `AVISIT`: variable used to filter for analysis visits.
#' * `PARAMCD`: variable used to filter for endpoints, after filtering for `paramcd` and `avisit`, one
#' observation per patient is expected for the analysis to be meaningful.
#'
#' @inherit module_arguments return seealso
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl
#' ADQS <- tmc_ex_adqs
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' ADSL <- data[["ADSL"]]
#' ADQS <- data[["ADQS"]]
#'
#' arm_ref_comp <- list(
#' ARM = list(
#' ref = "B: Placebo",
#' comp = c("A: Drug X", "C: Combination")
#' ),
#' ACTARMCD = list(
#' ref = "ARM B",
#' comp = c("ARM A", "ARM C")
#' )
#' )
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_t_ancova(
#' label = "ANCOVA Table",
#' dataname = "ADQS",
#' avisit = choices_selected(
#' choices = value_choices(ADQS, "AVISIT"),
#' selected = "WEEK 1 DAY 8"
#' ),
#' arm_var = choices_selected(
#' choices = variable_choices(ADSL, c("ARM", "ACTARMCD", "ARMCD")),
#' selected = "ARMCD"
#' ),
#' arm_ref_comp = arm_ref_comp,
#' aval_var = choices_selected(
#' choices = variable_choices(ADQS, c("CHG", "AVAL")),
#' selected = "CHG"
#' ),
#' cov_var = choices_selected(
#' choices = variable_choices(ADQS, c("BASE", "STRATA1", "SEX")),
#' selected = "STRATA1"
#' ),
#' paramcd = choices_selected(
#' choices = value_choices(ADQS, "PARAMCD", "PARAM"),
#' selected = "FKSI-FWB"
#' ),
#' interact_var = choices_selected(
#' choices = variable_choices(ADQS, c("BASE", "STRATA1", "SEX")),
#' selected = "STRATA1"
#' )
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
tm_t_ancova <- function(label,
dataname,
parentname = ifelse(
inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var),
"ADSL"
),
arm_var,
arm_ref_comp = NULL,
aval_var,
cov_var,
include_interact = FALSE,
interact_var = NULL,
interact_y = FALSE,
avisit,
paramcd,
conf_level = teal.transform::choices_selected(c(0.95, 0.9, 0.8), 0.95, keep_order = TRUE),
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args(),
transformators = list(),
decorators = list()) {
message("Initializing tm_t_ancova")
checkmate::assert_string(label)
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_class(arm_var, "choices_selected")
checkmate::assert_class(aval_var, "choices_selected")
checkmate::assert_class(cov_var, "choices_selected")
checkmate::assert_class(avisit, "choices_selected")
checkmate::assert_class(paramcd, "choices_selected")
checkmate::assert_class(conf_level, "choices_selected")
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(basic_table_args, "basic_table_args")
assert_decorators(decorators, "table")
args <- c(as.list(environment()))
if (is.null(interact_var)) {
interact_var <- teal.transform::choices_selected(
choices = cov_var$choices,
selected = NULL
)
}
data_extract_list <- list(
arm_var = cs_to_des_select(arm_var, dataname = parentname),
aval_var = cs_to_des_select(aval_var, dataname = dataname),
cov_var = cs_to_des_select(cov_var, dataname = dataname, multiple = TRUE),
avisit = cs_to_des_filter(avisit, dataname = dataname, multiple = TRUE, include_vars = TRUE),
paramcd = cs_to_des_filter(paramcd, dataname = dataname, multiple = TRUE),
interact_var = cs_to_des_select(interact_var, dataname = dataname)
)
module(
label = label,
ui = ui_ancova,
ui_args = c(data_extract_list, args),
server = srv_ancova,
server_args = c(
data_extract_list,
list(
dataname = dataname,
parentname = parentname,
arm_ref_comp = arm_ref_comp,
include_interact = include_interact,
label = label,
basic_table_args = basic_table_args,
decorators = decorators
)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
#' @keywords internal
ui_ancova <- function(id, ...) {
a <- list(...)
is_single_dataset_value <- teal.transform::is_single_dataset(
a$arm_var, a$aval_var, a$cov_var, a$avisit, a$paramcd, a$interact_var
)
ns <- NS(id)
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(teal.widgets::table_with_settings_ui(ns("table"))),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(a[c("arm_var", "aval_var", "cov_var", "avisit", "paramcd", "interact_var")]),
teal.transform::data_extract_ui(
id = ns("avisit"),
label = "Analysis Visit",
data_extract_spec = a$avisit,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("paramcd"),
label = "Select Endpoint",
data_extract_spec = a$paramcd,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("aval_var"),
label = "Analysis Variable",
data_extract_spec = a$aval_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("arm_var"),
label = "Select Treatment Variable",
data_extract_spec = a$arm_var,
is_single_dataset = is_single_dataset_value
),
uiOutput(
ns("arms_buckets"),
title = paste(
"Multiple reference groups are automatically combined into a single group",
"when more than one value is selected."
)
),
uiOutput(ns("helptext_ui")),
checkboxInput(
ns("combine_comp_arms"),
"Combine all comparison groups?",
value = FALSE
),
teal.transform::data_extract_ui(
id = ns("cov_var"),
label = "Covariates",
data_extract_spec = a$cov_var,
is_single_dataset = is_single_dataset_value
),
teal.widgets::optionalSelectInput(
inputId = ns("conf_level"),
label = HTML(paste("Confidence Level")),
a$conf_level$choices,
a$conf_level$selected,
multiple = FALSE,
fixed = a$conf_level$fixed
),
tags$div(
tags$label("Include Interaction Term"),
shinyWidgets::switchInput(
inputId = ns("include_interact"),
value = FALSE,
size = "mini"
),
conditionalPanel(
condition = paste0("input['", ns("include_interact"), "']"),
tags$div(
teal.transform::data_extract_ui(
id = ns("interact_var"),
label = "Select Interaction Variable",
data_extract_spec = a$interact_var,
is_single_dataset = is_single_dataset_value
),
teal.widgets::optionalSelectInput(
ns("interact_y"),
label = "Select Interaction y",
choices = "",
selected = "",
multiple = TRUE,
fixed = FALSE
)
)
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(a$decorators, "table"))
)
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
),
pre_output = a$pre_output,
post_output = a$post_output
)
}
#' @keywords internal
srv_ancova <- function(id,
data,
reporter,
filter_panel_api,
dataname,
parentname,
arm_var,
arm_ref_comp,
aval_var,
cov_var,
include_interact,
interact_var,
paramcd,
avisit,
label,
basic_table_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(shiny::isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
# Setup arm variable selection, default reference arms, and default
# comparison arms for encoding panel.
iv_arco <- arm_ref_comp_observer(
session,
input,
output,
id_arm_var = extract_input("arm_var", parentname),
data = data()[[parentname]],
arm_ref_comp = arm_ref_comp,
module = "tm_ancova"
)
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list(
arm_var = arm_var,
aval_var = aval_var,
cov_var = cov_var,
avisit = avisit,
paramcd = paramcd,
interact_var = interact_var
),
datasets = data,
select_validation_rule = list(
arm_var = shinyvalidate::sv_required("Arm variable cannot be empty."),
aval_var = shinyvalidate::sv_required("Analysis variable cannot be empty."),
cov_var = shinyvalidate::sv_optional(),
interact_var = shinyvalidate::sv_optional()
),
filter_validation_rule = list(
avisit = shinyvalidate::sv_required("`Analysis Visit` field cannot be empty."),
paramcd = shinyvalidate::sv_required("`Select Endpoint` is not selected.")
)
)
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
iv$add_rule("conf_level", shinyvalidate::sv_required("Please choose a confidence level."))
iv$add_rule("conf_level", shinyvalidate::sv_between(
0, 1,
message_fmt = "Confdence level must be between {left} and {right}."
))
iv$add_validator(iv_arco)
teal.transform::compose_and_enable_validators(iv, selector_list)
})
anl_inputs <- teal.transform::merge_expression_srv(
selector_list = selector_list,
datasets = data,
merge_function = "dplyr::inner_join"
)
adsl_inputs <- teal.transform::merge_expression_module(
datasets = data,
data_extract = list(arm_var = arm_var),
anl_name = "ANL_ADSL"
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(as.expression(anl_inputs()$expr)) %>%
teal.code::eval_code(as.expression(adsl_inputs()$expr))
})
merged <- list(
anl_input_r = anl_inputs,
adsl_input_r = adsl_inputs,
anl_q = anl_q
)
output$helptext_ui <- renderUI({
if (length(selector_list()$arm_var()$select) != 0) {
helpText("Multiple reference groups are automatically combined into a single group.")
}
})
# Event handler:
# Update interact_y choices to all levels of selected interact_var
observeEvent(
{
input$include_interact
input$`interact_var-dataset_ADQS_singleextract-select`
},
{
interact_var <- input$`interact_var-dataset_ADQS_singleextract-select`
if (isTRUE(input$include_interact) && length(interact_var) > 0) {
interact_choices <- sort(as.vector(unique(merged$anl_q()[[dataname]][[interact_var]])))
if (all(is.numeric(interact_choices))) {
shinyjs::hide("interact_y")
} else {
interact_select <- if (!all(input$interact_y %in% interact_choices)) {
interact_choices[1]
} else {
input$interact_y
}
shinyjs::show("interact_y")
teal.widgets::updateOptionalSelectInput(
session,
"interact_y",
selected = interact_select,
choices = interact_choices
)
}
}
}
)
# Prepare the analysis environment (filter data, check data, populate envir).
validate_checks <- reactive({
adsl_filtered <- merged$anl_q()[[parentname]]
anl_filtered <- merged$anl_q()[[dataname]]
teal::validate_inputs(iv_r())
input_arm_var <- as.vector(merged$anl_input_r()$columns_source$arm_var)
input_aval_var <- as.vector(merged$anl_input_r()$columns_source$aval_var)
input_cov_var <- as.vector(merged$anl_input_r()$columns_source$cov_var)
input_interact_var <- as.vector(merged$anl_input_r()$columns_source$interact_var)
input_avisit <- unlist(avisit$filter)["vars_selected"]
input_paramcd <- unlist(paramcd$filter)["vars_selected"]
# Validate inputs.
validate_args <- list(
adsl = adsl_filtered,
adslvars = c("USUBJID", "STUDYID", input_arm_var),
anl = anl_filtered,
anlvars = c(
"USUBJID", "STUDYID", input_paramcd, input_avisit, input_aval_var, input_cov_var, input_interact_var
),
arm_var = input_arm_var
)
validate_args <- append(
validate_args,
list(ref_arm = unlist(input$buckets$Ref), comp_arm = unlist(input$buckets$Comp))
)
do.call(what = "validate_standard_inputs", validate_args)
# Other validations.
validate(shiny::need(
length(unique(adsl_filtered[[input_arm_var]])) > 1,
"ANCOVA table needs at least 2 arm groups to make comparisons."
))
# check that there is at least one record with no missing data
validate(shiny::need(
!all(is.na(merged$anl_q()[["ANL"]][[input_aval_var]])),
"ANCOVA table cannot be calculated as all values are missing."
))
# check that for each visit there is at least one record with no missing data
all_NA_dataset <- merged$anl_q()[["ANL"]] %>% # nolint: object_name.
dplyr::group_by(dplyr::across(dplyr::all_of(c(input_avisit, input_arm_var)))) %>%
dplyr::summarize(all_NA = all(is.na(.data[[input_aval_var]])))
validate(shiny::need(
!any(all_NA_dataset$all_NA),
"ANCOVA table cannot be calculated as all values are missing for one visit for (at least) one arm."
))
if (input$include_interact) {
if (!is.null(input_interact_var) && length(input_interact_var) > 0) {
validate(shiny::need(
!input_interact_var %in% c(input_avisit, input_paramcd) &&
length(as.vector(unique(anl_filtered[[input_interact_var]]))) > 1,
paste(
"Interaction variable cannot be a filter variable and must have more than one level.",
"Please select a different interaction variable."
)
))
if (!all(is.numeric(as.vector(unique(anl_filtered[[input_interact_var]]))))) {
validate(shiny::need(
!is.null(input$interact_y),
paste(
"Interaction y must be selected when a discrete variable is chosen for interact variable.",
"Please select an interaction y, change the interaction variable, or turn off interactions."
)
))
}
}
}
if (length(input_cov_var >= 1L)) {
input_cov_var_dataset <- anl_filtered[input_cov_var]
validate(
need(
all(vapply(input_cov_var_dataset, function(col) length(unique(col)) > 1L, logical(1))),
"Selected covariates should have more than one level for showing the adjusted analysis."
)
)
}
})
# The R-code corresponding to the analysis.
table_q <- reactive({
validate_checks()
ANL <- merged$anl_q()[["ANL"]]
label_paramcd <- get_paramcd_label(ANL, paramcd)
input_aval <- as.vector(merged$anl_input_r()$columns_source$aval_var)
label_aval <- if (length(input_aval) != 0) attributes(ANL[[input_aval]])$label else NULL
paramcd_levels <- unique(ANL[[unlist(paramcd$filter)["vars_selected"]]])
visit_levels <- unique(ANL[[unlist(avisit$filter)["vars_selected"]]])
interact_var <- as.vector(merged$anl_input_r()$columns_source$interact_var)
if (length(interact_var) > 0) {
if (is.numeric(ANL[[interact_var]])) {
interact_y <- FALSE
} else if (!all(input$interact_y %in% levels(ANL[[interact_var]]))) {
interact_y <- levels(ANL[[interact_var]])[1]
} else {
interact_y <- input$interact_y
}
} else {
interact_var <- NULL
if (length(input$interact_y) == 0 || all(input$interact_y == "")) {
interact_y <- FALSE
}
}
my_calls <- template_ancova(
parentname = "ANL_ADSL",
dataname = "ANL",
arm_var = as.vector(merged$anl_input_r()$columns_source$arm_var),
ref_arm = unlist(input$buckets$Ref),
comp_arm = unlist(input$buckets$Comp),
combine_comp_arms = input$combine_comp_arms,
aval_var = as.vector(merged$anl_input_r()$columns_source$aval_var),
label_aval = label_aval,
cov_var = as.vector(merged$anl_input_r()$columns_source$cov_var),
include_interact = input$include_interact,
interact_var = interact_var,
interact_y = interact_y,
paramcd_levels = paramcd_levels,
paramcd_var = unlist(paramcd$filter)["vars_selected"],
label_paramcd = label_paramcd,
visit_levels = visit_levels,
visit_var = unlist(avisit$filter)["vars_selected"],
conf_level = as.numeric(input$conf_level),
basic_table_args = basic_table_args
)
teal.code::eval_code(merged$anl_q(), as.expression(unlist(my_calls)))
})
decorated_table_q <- srv_decorate_teal_data(
id = "decorator",
data = table_q,
decorators = select_decorators(decorators, "table"),
expr = table
)
# Output to render.
table_r <- reactive({
decorated_table_q()[["table"]]
})
teal.widgets::table_with_settings_srv(
id = "table",
table_r = table_r
)
# Render R code.
source_code_r <- reactive(teal.code::get_code(req(decorated_table_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = label
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "ANCOVA",
label = label,
description = "Analysis of Covariance",
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Table", "header3")
card$append_table(table_r())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.