Nothing
#' Template: Binary Outcome
#'
#' Creates a valid expression to generate a binary outcome analysis.
#'
#' @inheritParams template_arguments
#' @param responder_val (`character`)\cr the short label for observations to
#' translate `AVALC` into responder/non-responder.
#' @param responder_val_levels (`character`)\cr the levels of responses that will be shown in the multinomial
#' response estimations.
#' @param show_rsp_cat (`logical`)\cr display the multinomial response estimations.
#' @param paramcd (`character`)\cr response parameter value to use in the table title.
#'
#' @inherit template_arguments return
#'
#' @seealso [tm_t_binary_outcome()]
#'
#' @keywords internal
template_binary_outcome <- function(dataname,
parentname,
arm_var,
paramcd,
ref_arm = NULL,
comp_arm = NULL,
compare_arm = FALSE,
combine_comp_arms = FALSE,
aval_var = "AVALC",
show_rsp_cat = TRUE,
responder_val = c("Complete Response (CR)", "Partial Response (PR)"),
responder_val_levels = responder_val,
control = list(
global = list(method = "waldcc", conf_level = 0.95),
unstrat = list(method_ci = "waldcc", method_test = "schouten", odds = TRUE),
strat = list(method_ci = "cmh", method_test = "cmh", strat = NULL)
),
add_total = FALSE,
total_label = default_total_label(),
na_level = default_na_str(),
basic_table_args = teal.widgets::basic_table_args()) {
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_string(arm_var)
checkmate::assert_string(aval_var)
checkmate::assert_flag(compare_arm)
checkmate::assert_flag(combine_comp_arms)
checkmate::assert_flag(show_rsp_cat)
checkmate::assert_flag(add_total)
checkmate::assert_string(na_level)
checkmate::assert_string(total_label)
ref_arm_val <- paste(ref_arm, collapse = "/")
y <- list()
data_list <- list()
data_list <- add_expr(
data_list,
prepare_arm(
dataname = dataname,
arm_var = arm_var,
ref_arm = ref_arm,
comp_arm = comp_arm,
ref_arm_val = ref_arm_val,
compare_arm = compare_arm
)
)
data_list <- add_expr(
data_list,
substitute_names(
expr = dplyr::mutate(is_rsp = aval_var %in% responder_val) %>%
dplyr::mutate(aval = factor(aval_var, levels = responder_val_levels)),
names = list(
aval = as.name(aval_var)
),
others = list(
responder_val = responder_val,
responder_val_levels = responder_val_levels,
aval_var = as.name(aval_var)
)
)
)
y$data <- substitute(
expr = {
anl <- data_pipe
parentname <- arm_preparation %>% df_explicit_na(na_level = na_str)
},
env = list(
data_pipe = pipe_expr(data_list),
parentname = as.name(parentname),
arm_preparation = prepare_arm(
dataname = parentname,
arm_var = arm_var,
ref_arm = ref_arm,
comp_arm = comp_arm,
ref_arm_val = ref_arm_val,
compare_arm = compare_arm
),
na_str = na_level
)
)
if (compare_arm && combine_comp_arms) {
y$combine_comp_arms <- substitute(
expr = groups <- combine_groups(fct = df[[group]], ref = ref_arm_val),
env = list(
df = as.name(parentname),
group = arm_var,
ref_arm_val = ref_arm_val
)
)
}
table_title <- if (length(responder_val) > 1) {
paste(
"Table of", paramcd, "for", paste(utils::head(responder_val, -1), collapse = ", "),
"and", utils::tail(responder_val, 1), "Responders"
)
} else {
paste("Table of", paramcd, "for", responder_val, "Responders")
}
strata_var <- control$strat$strat
subtitle <- ifelse(length(strata_var) == 0, "", paste("Stratified by", paste(strata_var, collapse = " and ")))
parsed_basic_table_args <- teal.widgets::parse_basic_table_args(
teal.widgets::resolve_basic_table_args(
user_table = basic_table_args,
module_table = teal.widgets::basic_table_args(
show_colcounts = TRUE,
title = table_title,
subtitles = subtitle
)
)
)
layout_list <- list()
layout_list <- add_expr(
layout_list,
parsed_basic_table_args
)
if (!compare_arm && !combine_comp_arms && add_total) {
layout_list <- add_expr(
layout_list,
substitute(
rtables::split_cols_by(
var = arm_var,
split_fun = add_overall_level(total_label, first = FALSE)
),
env = list(
arm_var = arm_var,
total_label = total_label
)
)
)
} else {
layout_list <- add_expr(
layout_list,
split_col_expr(
compare = compare_arm,
combine = combine_comp_arms,
arm_var = arm_var,
ref = ref_arm_val
)
)
}
layout_list <- add_expr(
layout_list,
substitute(
estimate_proportion(
vars = "is_rsp",
conf_level = conf_level,
method = method,
table_names = "prop_est"
),
env = list(
conf_level = control$global$conf_level,
method = control$global$method
)
)
)
if (compare_arm) {
layout_list <- add_expr(
layout_list,
substitute(
expr = estimate_proportion_diff(
vars = "is_rsp", show_labels = "visible",
var_labels = "Unstratified Analysis",
conf_level = conf_level,
method = method_ci,
table_names = "u_prop_diff"
) %>%
test_proportion_diff(
vars = "is_rsp",
method = method_test,
table_names = "u_test_diff"
),
env = list(
conf_level = control$global$conf_level,
method_ci = control$unstrat$method_ci,
method_test = control$unstrat$method_test
)
)
)
if (control$unstrat$odds) {
layout_list <- add_expr(
layout_list,
substitute(
expr = estimate_odds_ratio(
vars = "is_rsp",
conf_level = conf_level,
table_names = "u_est_or"
),
env = list(conf_level = control$global$conf_level)
)
)
}
if (!is.null(control$strat$strat)) {
layout_list <- add_expr(
layout_list,
substitute(
expr = estimate_proportion_diff(
vars = "is_rsp", show_labels = "visible",
var_labels = "Stratified Analysis",
variables = list(strata = strata),
conf_level = conf_level,
method = method_ci,
table_names = "s_prop_diff"
) %>%
test_proportion_diff(
vars = "is_rsp",
method = method_test,
variables = list(strata = strata),
table_names = "s_test_diff"
),
env = list(
conf_level = control$global$conf_level,
method_ci = control$strat$method_ci,
strata = control$strat$strat,
method_test = control$strat$method_test,
arm_var = arm_var
)
)
)
}
}
if (compare_arm && !is.null(control$strat$strat)) {
layout_list <- if (combine_comp_arms) {
add_expr(
layout_list,
substitute(
expr = estimate_odds_ratio(
vars = "is_rsp",
variables = list(arm = arm_var, strata = strata),
conf_level = conf_level,
table_names = "s_est_or",
groups_list = groups
),
env = list(
conf_level = control$global$conf_level,
strata = control$strat$strat,
arm_var = arm_var
)
)
)
} else {
add_expr(
layout_list,
substitute(
expr = estimate_odds_ratio(
vars = "is_rsp",
variables = list(arm = arm_var, strata = strata),
conf_level = conf_level,
table_names = "s_est_or"
),
env = list(
conf_level = control$global$conf_level,
strata = control$strat$strat,
arm_var = arm_var
)
)
)
}
}
if (show_rsp_cat) {
layout_list <- add_expr(
layout_list,
substitute(
estimate_multinomial_response(
var = aval_var,
conf_level = conf_level,
method = method
),
list(
conf_level = control$global$conf_level,
method = control$global$method,
aval_var = aval_var
)
)
)
}
y$layout <- substitute(
expr = lyt <- layout_pipe,
env = list(layout_pipe = pipe_expr(layout_list))
)
y$table <- substitute(
expr = {
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = parentname)
},
env = list(parentname = as.name(parentname))
)
y
}
#' teal Module: Binary Outcome Table
#'
#' This module produces a binary outcome response summary table, with the option to match the template for
#' response table `RSPT01` available in the TLG Catalog [here](
#' https://insightsengineering.github.io/tlg-catalog/stable/tables/efficacy/rspt01.html).
#'
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_binary_outcome
#' @param rsp_table (`logical`)\cr whether the initial set-up of the module should match `RSPT01`. Defaults to `FALSE`.
#' @param control (named `list`)\cr named list containing 3 named lists as follows:
#' * `global`: a list of settings for overall analysis with 2 named elements `method` and `conf_level`.
#' * `unstrat`: a list of settings for unstratified analysis with 3 named elements `method_ci` and `method_test`, and
#' `odds`. See [tern::estimate_proportion_diff()], [tern::test_proportion_diff()], and
#' [tern::estimate_odds_ratio()], respectively, for options and details on how these settings are implemented in the
#' analysis.
#' * `strat`: a list of settings for stratified analysis with elements `method_ci` and `method_test`. See
#' [tern::estimate_proportion_diff()] and [tern::test_proportion_diff()], respectively, for options and details on
#' how these settings are implemented in the analysis.
#'
#' @details
#' * The display order of response categories inherits the factor level order of the source data. Use
#' [base::factor()] and its `levels` argument to manipulate the source data in order to include/exclude
#' or re-categorize response categories and arrange the display order. If response categories are `"Missing"`,
#' `"Not Evaluable (NE)"`, or `"Missing or unevaluable"`, 95% confidence interval will not be calculated.
#'
#' * Reference arms are automatically combined if multiple arms selected as reference group.
#'
#' @inherit module_arguments return seealso
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `table` (`TableTree` - output of `rtables::build_table()`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_t_binary_outcome(
#' ..., # arguments for module
#' decorators = list(
#' table = teal_transform_module(...) # applied only to `table` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' library(dplyr)
#'
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl
#' ADRS <- tmc_ex_adrs %>%
#' mutate(
#' AVALC = d_onco_rsp_label(AVALC) %>%
#' with_label("Character Result/Finding")
#' ) %>%
#' filter(PARAMCD != "OVRINV" | AVISIT == "FOLLOW UP")
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' ADSL <- data[["ADSL"]]
#' ADRS <- data[["ADRS"]]
#'
#' arm_ref_comp <- list(
#' ARMCD = list(ref = "ARM B", comp = c("ARM A", "ARM C")),
#' ARM = list(ref = "B: Placebo", comp = c("A: Drug X", "C: Combination"))
#' )
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_t_binary_outcome(
#' label = "Responders",
#' dataname = "ADRS",
#' paramcd = choices_selected(
#' choices = value_choices(ADRS, "PARAMCD", "PARAM"),
#' selected = "BESRSPI"
#' ),
#' arm_var = choices_selected(
#' choices = variable_choices(ADRS, c("ARM", "ARMCD", "ACTARMCD")),
#' selected = "ARM"
#' ),
#' arm_ref_comp = arm_ref_comp,
#' strata_var = choices_selected(
#' choices = variable_choices(ADRS, c("SEX", "BMRKR2", "RACE")),
#' selected = "RACE"
#' ),
#' default_responses = list(
#' BESRSPI = list(
#' rsp = c("Complete Response (CR)", "Partial Response (PR)"),
#' levels = c(
#' "Complete Response (CR)", "Partial Response (PR)",
#' "Stable Disease (SD)", "Progressive Disease (PD)"
#' )
#' ),
#' INVET = list(
#' rsp = c("Stable Disease (SD)", "Not Evaluable (NE)"),
#' levels = c(
#' "Complete Response (CR)", "Not Evaluable (NE)", "Partial Response (PR)",
#' "Progressive Disease (PD)", "Stable Disease (SD)"
#' )
#' ),
#' OVRINV = list(
#' rsp = c("Progressive Disease (PD)", "Stable Disease (SD)"),
#' levels = c("Progressive Disease (PD)", "Stable Disease (SD)", "Not Evaluable (NE)")
#' )
#' )
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
tm_t_binary_outcome <- function(label,
dataname,
parentname = ifelse(
test = inherits(arm_var, "data_extract_spec"),
yes = teal.transform::datanames_input(arm_var),
no = "ADSL"
),
arm_var,
arm_ref_comp = NULL,
paramcd,
strata_var,
aval_var = teal.transform::choices_selected(
choices = teal.transform::variable_choices(dataname, c("AVALC", "SEX")),
selected = "AVALC", fixed = FALSE
),
conf_level = teal.transform::choices_selected(
c(0.95, 0.9, 0.8), 0.95,
keep_order = TRUE
),
default_responses =
c("CR", "PR", "Y", "Complete Response (CR)", "Partial Response (PR)", "M"),
rsp_table = FALSE,
control = list(
global = list(
method = ifelse(rsp_table, "clopper-pearson", "waldcc"),
conf_level = 0.95
),
unstrat = list(
method_ci = ifelse(rsp_table, "wald", "waldcc"),
method_test = "schouten",
odds = TRUE
),
strat = list(method_ci = "cmh", method_test = "cmh")
),
add_total = FALSE,
total_label = default_total_label(),
na_level = default_na_str(),
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args(),
transformators = list(),
decorators = list()) {
message("Initializing tm_t_binary_outcome")
checkmate::assert_string(label)
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_class(arm_var, "choices_selected")
checkmate::assert_class(paramcd, "choices_selected")
checkmate::assert_class(strata_var, "choices_selected")
checkmate::assert_class(aval_var, "choices_selected")
checkmate::assert_class(conf_level, "choices_selected")
checkmate::assert_flag(add_total)
checkmate::assert_string(total_label)
checkmate::assert_string(na_level)
checkmate::assert(
checkmate::check_class(default_responses, classes = "list"),
checkmate::check_class(default_responses, classes = "character"),
checkmate::check_class(default_responses, classes = "numeric"),
checkmate::check_class(default_responses, classes = "NULL")
)
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(basic_table_args, "basic_table_args")
# control checks
checkmate::assert_names(names(control), permutation.of = c("global", "unstrat", "strat"))
checkmate::assert_names(names(control$global), permutation.of = c("method", "conf_level"))
checkmate::assert_names(names(control$unstrat), permutation.of = c("method_ci", "method_test", "odds"))
checkmate::assert_names(names(control$strat), permutation.of = c("method_ci", "method_test"))
checkmate::assert_subset(
control$global$method,
c("wald", "waldcc", "clopper-pearson", "wilson", "wilsonc", "jeffreys", "agresti-coull")
)
checkmate::assert_number(control$global$conf_level, lower = 0, upper = 1)
checkmate::assert_subset(control$unstrat$method_ci, c("wald", "waldcc", "ha", "newcombe", "newcombecc"))
checkmate::assert_subset(control$unstrat$method_test, c("chisq", "fisher", "schouten"))
checkmate::assert_logical(control$unstrat$odds)
checkmate::assert_subset(
control$strat$method_ci, c("wald", "waldcc", "cmh", "ha", "strat_newcombe", "strat_newcombecc")
)
checkmate::assert_subset(control$strat$method_test, c("cmh"))
assert_decorators(decorators, "table")
args <- as.list(environment())
data_extract_list <- list(
arm_var = cs_to_des_select(arm_var, dataname = parentname),
paramcd = cs_to_des_filter(paramcd, dataname = dataname),
aval_var = cs_to_des_select(aval_var, dataname = dataname),
strata_var = cs_to_des_select(strata_var, dataname = parentname, multiple = TRUE)
)
module(
label = label,
ui = ui_t_binary_outcome,
ui_args = c(data_extract_list, args),
server = srv_t_binary_outcome,
server_args = c(
data_extract_list,
list(
dataname = dataname,
parentname = parentname,
arm_ref_comp = arm_ref_comp,
label = label,
total_label = total_label,
default_responses = default_responses,
control = control,
rsp_table = rsp_table,
na_level = na_level,
basic_table_args = basic_table_args,
decorators = decorators
)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
#' @keywords internal
ui_t_binary_outcome <- function(id, ...) {
a <- list(...)
is_single_dataset_value <- teal.transform::is_single_dataset(
a$paramcd,
a$arm_var,
a$aval_var,
a$strata_var
)
ns <- NS(id)
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(teal.widgets::table_with_settings_ui(ns("table"))),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(a[c("paramcd", "arm_var", "aval_var", "strata_var")]),
teal.transform::data_extract_ui(
id = ns("paramcd"),
label = "Parameter",
data_extract_spec = a$paramcd,
is_single_dataset = is_single_dataset_value
),
selectInput(
ns("responders"),
"Responders",
choices = NULL,
selected = NULL,
multiple = TRUE
),
teal.transform::data_extract_ui(
id = ns("arm_var"),
label = "Select Treatment Variable",
data_extract_spec = a$arm_var,
is_single_dataset = is_single_dataset_value
),
tags$div(
class = "arm-comp-box",
tags$label("Compare Treatments"),
shinyWidgets::switchInput(
inputId = ns("compare_arms"),
value = !is.null(a$arm_ref_comp),
size = "mini"
),
conditionalPanel(
condition = paste0("input['", ns("compare_arms"), "']"),
tags$div(
uiOutput(
ns("arms_buckets"),
title = paste(
"Multiple reference groups are automatically combined into a single group when more than one",
"value is selected."
)
),
helpText("Multiple reference groups are automatically combined into a single group."),
checkboxInput(
ns("combine_comp_arms"),
"Combine all comparison groups?",
value = FALSE
)
)
)
),
conditionalPanel(
condition = paste0("input['", ns("compare_arms"), "']"),
teal.widgets::panel_group(
teal.widgets::panel_item(
"Unstratified analysis settings",
teal.widgets::optionalSelectInput(
ns("u_diff_ci"),
label = "Method for Difference of Proportions CI",
choices = c(
"Wald, without correction" = "wald",
"Wald, with correction" = "waldcc",
"Anderson-Hauck" = "ha",
"Newcombe, without correction" = "newcombe",
"Newcombe, with correction" = "newcombecc"
),
selected = a$control$unstrat$method_ci,
multiple = FALSE,
fixed = FALSE
),
teal.widgets::optionalSelectInput(
ns("u_diff_test"),
label = "Method for Difference of Proportions Test",
choices = c(
"Chi-squared Test" = "chisq",
"Fisher's Exact Test" = "fisher",
"Chi-Squared Test with Schouten correction" = "schouten"
),
selected = a$control$unstrat$method_test,
multiple = FALSE,
fixed = FALSE
),
tags$label("Odds Ratio Estimation"),
shinyWidgets::switchInput(
inputId = ns("u_odds_ratio"), value = a$control$unstrat$odds, size = "mini"
)
)
),
teal.widgets::panel_group(
teal.widgets::panel_item(
"Stratified analysis settings",
teal.transform::data_extract_ui(
id = ns("strata_var"),
label = "Stratification Factors",
data_extract_spec = a$strata_var,
is_single_dataset = is_single_dataset_value
),
teal.widgets::optionalSelectInput(
ns("s_diff_ci"),
label = "Method for Difference of Proportions CI",
choices = c(
"Wald, without correction" = "wald",
"Wald, with correction" = "waldcc",
"CMH, without correction" = "cmh",
"Anderson-Hauck" = "ha",
"Stratified Newcombe, without correction" = "strat_newcombe",
"Stratified Newcombe, with correction" = "strat_newcombecc"
),
selected = a$control$strat$method_ci,
multiple = FALSE
),
teal.widgets::optionalSelectInput(
ns("s_diff_test"),
label = "Method for Difference of Proportions Test",
choices = c("CMH Test" = "cmh"),
selected = a$control$strat$method_test,
multiple = FALSE,
fixed = TRUE
)
)
)
),
conditionalPanel(
condition = paste0("!input['", ns("compare_arms"), "']"),
checkboxInput(ns("add_total"), "Add All Patients column", value = a$add_total)
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(a$decorators, "table")),
teal.widgets::panel_item(
"Additional table settings",
teal.widgets::optionalSelectInput(
inputId = ns("prop_ci_method"),
label = "Method for Proportion CI",
choices = c(
"Wald, without correction" = "wald",
"Wald, with correction" = "waldcc",
"Clopper-Pearson" = "clopper-pearson",
"Wilson" = "wilson",
"Wilson, with correction" = "wilsonc",
"Jeffreys" = "jeffreys",
"Agresti-Coull" = "agresti-coull"
),
selected = a$control$global$method,
multiple = FALSE,
fixed = FALSE
),
teal.widgets::optionalSelectInput(
inputId = ns("conf_level"),
label = "Confidence Level",
a$conf_level$choices,
a$conf_level$selected,
multiple = FALSE,
fixed = a$conf_level$fixed
),
tags$label("Show All Response Categories"),
shinyWidgets::switchInput(
inputId = ns("show_rsp_cat"),
value = ifelse(a$rsp_table, TRUE, FALSE),
size = "mini"
)
),
teal.transform::data_extract_ui(
id = ns("aval_var"),
label = "Analysis Variable",
data_extract_spec = a$aval_var,
is_single_dataset = is_single_dataset_value
)
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
),
pre_output = a$pre_output,
post_output = a$post_output
)
}
#' @keywords internal
srv_t_binary_outcome <- function(id,
data,
reporter,
filter_panel_api,
dataname,
parentname,
paramcd,
aval_var,
arm_var,
arm_ref_comp,
strata_var,
add_total,
control,
total_label,
label,
default_responses,
rsp_table,
na_level,
basic_table_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(shiny::isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
# Setup arm variable selection, default reference arms, and default
# comparison arms for encoding panel
iv_arm_ref <- arm_ref_comp_observer(
session,
input,
output,
id_arm_var = extract_input("arm_var", parentname),
data = data()[[parentname]],
arm_ref_comp = arm_ref_comp,
module = "tm_t_binary_outcome",
on_off = reactive(input$compare_arms)
)
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list(arm_var = arm_var, paramcd = paramcd, strata_var = strata_var, aval_var = aval_var),
datasets = data,
select_validation_rule = list(
aval_var = shinyvalidate::sv_required("An analysis variable is required"),
arm_var = shinyvalidate::sv_required("A treatment variable is required")
),
filter_validation_rule = list(paramcd = shinyvalidate::sv_required(message = "Please select a filter."))
)
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
if (isTRUE(input$compare_arms)) {
iv$add_validator(iv_arm_ref)
}
iv$add_rule("responders", shinyvalidate::sv_required("`Responders` field is empty"))
iv$add_rule("conf_level", shinyvalidate::sv_required("Please choose a confidence level between 0 and 1"))
iv$add_rule(
"conf_level",
shinyvalidate::sv_between(0, 1, message_fmt = "Please choose a confidence level between {left} and {right}")
)
teal.transform::compose_and_enable_validators(iv, selector_list, c("arm_var", "aval_var", "paramcd"))
})
anl_inputs <- teal.transform::merge_expression_srv(
datasets = data,
selector_list = selector_list,
merge_function = "dplyr::inner_join"
)
adsl_inputs <- teal.transform::merge_expression_module(
datasets = data,
data_extract = list(arm_var = arm_var, strata_var = strata_var),
anl_name = "ANL_ADSL"
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(as.expression(anl_inputs()$expr)) %>%
teal.code::eval_code(as.expression(adsl_inputs()$expr))
})
observeEvent(
c(
input[[extract_input("aval_var", "ADRS")]],
input[[extract_input("paramcd", paramcd$filter[[1]]$dataname, filter = TRUE)]]
),
handlerExpr = {
anl <- anl_q()[["ANL"]]
aval_var <- anl_inputs()$columns_source$aval_var
paramcd <- input[[extract_input("paramcd", paramcd$filter[[1]]$dataname, filter = TRUE)]]
sel_param <- if (is.list(default_responses) && (!is.null(paramcd))) {
default_responses[[paramcd]]
} else {
default_responses
}
common_rsp <- if (is.list(sel_param)) {
sel_param$rsp
} else {
sel_param
}
responder_choices <- if (length(aval_var) == 0) {
character(0)
} else {
if ("levels" %in% names(sel_param)) {
if (length(intersect(unique(anl[[aval_var]]), sel_param$levels)) > 1) {
sel_param$levels
} else {
unique(anl[[aval_var]])
}
} else {
unique(anl[[aval_var]])
}
}
updateSelectInput(
session, "responders",
choices = responder_choices,
selected = intersect(responder_choices, common_rsp)
)
}
)
validate_check <- reactive({
teal::validate_inputs(iv_r())
adsl_filtered <- anl_q()[[parentname]]
anl_filtered <- anl_q()[[dataname]]
anl <- anl_q()[["ANL"]]
anl_m <- anl_inputs()
input_arm_var <- as.vector(anl_m$columns_source$arm_var)
input_strata_var <- as.vector(anl_m$columns_source$strata_var)
input_aval_var <- as.vector(anl_m$columns_source$aval_var)
input_paramcd <- unlist(paramcd$filter)["vars_selected"]
validate_args <- list(
adsl = adsl_filtered,
adslvars = c("USUBJID", "STUDYID", input_arm_var, input_strata_var),
anl = anl_filtered,
anlvars = c("USUBJID", "STUDYID", input_paramcd, input_aval_var),
arm_var = input_arm_var
)
if (length(input_arm_var) > 0 && length(unique(adsl_filtered[[input_arm_var]])) == 1) {
validate_args <- c(validate_args, list(min_n_levels_armvar = NULL))
}
if (isTRUE(input$compare_arms)) {
validate_args <- c(
validate_args,
list(ref_arm = unlist(input$buckets$Ref), comp_arm = unlist(input$buckets$Comp))
)
}
do.call(what = "validate_standard_inputs", validate_args)
teal::validate_one_row_per_id(anl, key = c("USUBJID", "STUDYID", input_paramcd))
validate(
if (length(input_strata_var) >= 1L) {
need(
sum(
vapply(
anl[input_strata_var],
FUN = function(x) {
length(unique(x)) > 1
},
logical(1)
)
) > 0,
"At least one strata variable must have more than one non-empty level after filtering."
)
}
)
validate(
if (length(input_strata_var) >= 1L) {
need(
sum(
vapply(
anl[input_strata_var],
FUN = function(strata) {
anl_arm <- factor(anl[[input_arm_var]])
tab <- base::table(strata, anl_arm)
tab_logic <- tab != 0L
sum(apply(tab_logic, 1, sum) == ncol(tab_logic)) >= 2
},
FUN.VALUE = logical(1)
)
) > 0,
"At least one strata variable must have at least two levels with observation(s) in all of the arms."
)
}
)
if (is.list(default_responses)) {
validate(
need(
all(
grepl("\\.rsp|\\.levels", names(unlist(default_responses))) |
gsub("[0-9]*", "", names(unlist(default_responses))) %in% names(default_responses)
),
"The lists given for each AVAL in default_responses must be named 'rsp' and 'levels'."
)
)
}
NULL
})
table_q <- reactive({
validate_check()
qenv <- anl_q()
anl_m <- anl_inputs()
anl <- qenv[["ANL"]]
input_aval_var <- as.vector(anl_m$columns_source$aval_var)
req(input$responders %in% anl[[input_aval_var]])
input_strata_var <- as.vector(anl_m$columns_source$strata_var)
input_paramcd <- unlist(anl_m$filter_info$paramcd)["selected"]
responder_val_levels <- as.character(unique(anl[[input_aval_var]]))
final_responder <- if (is.list(default_responses)) {
default_responses[[input_paramcd]][["levels"]]
} else {
responder_val_levels
}
if (length(final_responder) == 0) final_responder <- input$responders
my_calls <- template_binary_outcome(
dataname = "ANL",
parentname = "ANL_ADSL",
arm_var = as.vector(anl_m$columns_source$arm_var),
paramcd = input_paramcd,
ref_arm = unlist(input$buckets$Ref),
comp_arm = unlist(input$buckets$Comp),
compare_arm = input$compare_arms,
combine_comp_arms = input$combine_comp_arms && input$compare_arms,
aval_var = input_aval_var,
responder_val = input$responders,
responder_val_levels = final_responder,
show_rsp_cat = input$show_rsp_cat,
control = list(
global = list(
method = input$prop_ci_method,
conf_level = as.numeric(input$conf_level)
),
unstrat = list(
method_ci = input$u_diff_ci,
method_test = input$u_diff_test,
odds = input$u_odds_ratio
),
strat = list(
method_ci = input$s_diff_ci,
method_test = input$s_diff_test,
strat = if (length(input_strata_var) != 0) input_strata_var else NULL
)
),
add_total = input$add_total,
total_label = total_label,
na_level = na_level,
basic_table_args = basic_table_args
)
teal.code::eval_code(qenv, as.expression(unlist(my_calls)))
})
decorated_all_q <- srv_decorate_teal_data(
id = "decorator",
data = table_q,
decorators = select_decorators(decorators, "table"),
expr = table
)
# Outputs to render.
table_r <- reactive(decorated_all_q()[["table"]])
teal.widgets::table_with_settings_srv(
id = "table",
table_r = table_r
)
# Render R code.
source_code_r <- reactive(teal.code::get_code(req(decorated_all_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = label
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Binary Outcome Table",
label = label,
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Table", "header3")
card$append_table(table_r())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.