Nothing
#' Telescoping sampling of a Bayesian finite multivariate Gaussian
#' mixture where a prior on the number of components is specified.
#'
#' @description
#' * The MCMC scheme is implemented as suggested in Frühwirth-Schnatter et al (2021).
#' * The priors on the model parameters are specified as in Frühwirth-Schnatter et al (2021),
#' see the vignette for details and notation.
#' * The parameterizations of the Wishart and inverse Wishart distribution are used as in
#' Frühwirth-Schnatter et al (2021), see also the vignette.
#'
#' @param y A numeric matrix; containing the data.
#' @param S A numeric matrix; containing the initial cluster
#' assignments.
#' @param mu A numeric matrix; containing the initial cluster-specific
#' mean values.
#' @param Sigma A numeric matrix; containing the initial cluster-specific
#' variance covariance values.
#' @param eta A numeric vector; containing the initial cluster sizes.
#' @param c0 A numeric vector; hyperparameter of the prior on \eqn{\Sigma_k}.
#' @param g0 A numeric vector; hyperparameter of the prior on \eqn{C_0}.
#' @param G0 A numeric vector; hyperparameter of the prior on \eqn{C_0}.
#' @param C0 A numeric vector; initial value of the hyperparameter \eqn{C_0}.
#' @param b0 A numeric vector; hyperparameter of the prior on \eqn{\mu_k}.
#' @param B0 A numeric vector; hyperparameter of the prior on \eqn{\mu_k}.
#' @param M A numeric scalar; specifying the number of recorded
#' iterations.
#' @param burnin A numeric scalar; specifying the number of burn-in
#' iterations.
#' @param thin A numeric scalar; specifying the thinning used for the
#' iterations.
#' @param Kmax A numeric scalar; the maximum number of components.
#' @param G A character string; either `"MixDynamic"` or `"MixStatic"`.
#' @param priorOnK A named list; providing the prior on the number of components K, see [priorOnK_spec()].
#' @param priorOnWeights A named list; providing the prior on the mixture weights.
#' @param verbose A logical; indicating if some intermediate clustering
#' results should be printed.
#' @return A named list containing:
#' * `"Mu"`: sampled component means.
#' * `"Eta"`: sampled weights.
#' * `"S"`: sampled assignments.
#' * `"Nk"`: number of observations assigned to the different components, for each iteration.
#' * `"K"`: sampled number of components.
#' * `"Kplus"`: number of filled, i.e., non-empty components, for each iteration.
#' * `"e0"`: sampled Dirichlet parameter of the prior on the weights (if \eqn{e_0} is random).
#' * `"alpha"`: sampled Dirichlet parameter of the prior on the weights (if \eqn{\alpha} is random).
#' * `"acc"`: logical vector indicating acceptance in the Metropolis-Hastings step when sampling either \eqn{e_0} or \eqn{\alpha}.
#' @examples
#' y <- iris[, 1:4]
#' z <- iris$Species
#' r <- ncol(y)
#'
#' M <- 50
#' thin <- 1
#' burnin <- 0
#' Kmax <- 40
#' Kinit <- 10
#'
#' G <- "MixStatic"
#' priorOnE0 <- priorOnE0_spec("G_1_20", 1)
#' priorOnK <- priorOnK_spec("BNB_143")
#'
#' R <- apply(y, 2, function(x) diff(range(x)))
#' b0 <- apply(y, 2, median)
#' B_0 <- rep(1, r)
#' B0 <- diag((R^2) * B_0)
#' c0 <- 2.5 + (r-1)/2
#' g0 <- 0.5 + (r-1)/2
#' G0 <- 100 * g0/c0 * diag((1/R^2), nrow = r)
#' C0 <- g0 * chol2inv(chol(G0))
#'
#' cl_y <- kmeans(y, centers = Kinit, nstart = 100)
#' S_0 <- cl_y$cluster
#' mu_0 <- t(cl_y$centers)
#'
#' eta_0 <- rep(1/Kinit, Kinit)
#' Sigma_0 <- array(0, dim = c(r, r, Kinit))
#' Sigma_0[, , 1:Kinit] <- 0.5 * C0
#'
#' result <- sampleMultNormMixture(
#' y, S_0, mu_0, Sigma_0, eta_0,
#' c0, g0, G0, C0, b0, B0,
#' M, burnin, thin, Kmax, G, priorOnK, priorOnE0)
#'
#' K <- result$K
#' Kplus <- result$Kplus
#'
#' plot(K, type = "l", ylim = c(0, max(K)),
#' xlab = "iteration", main = "",
#' ylab = expression("K" ~ "/" ~ K["+"]), col = 1)
#' lines(Kplus, col = 2)
#' legend("topright", legend = c("K", expression(K["+"])),
#' col = 1:2, lty = 1, box.lwd = 0)
#'
sampleMultNormMixture <-
function(y, S, mu, Sigma, eta, c0, g0, G0, C0,
b0, B0, M, burnin, thin, Kmax,
G = c("MixDynamic", "MixStatic"),
priorOnK, priorOnWeights,
verbose = FALSE) {
y <- as.matrix(y)
## initial number of componens
K_j <- length(eta)
## prior on K and weights
log_pK <- priorOnK$log_pK
G <- match.arg(G)
if (G == "MixDynamic") {
log_pAlpha <- priorOnWeights$param$log_pAlpha
a_alpha <- priorOnWeights$param$a_alpha
b_alpha <- priorOnWeights$param$b_alpha
alpha <- priorOnWeights$param$alpha
e0 <- alpha / K_j
} else {
e0 <- priorOnWeights$param$e0
alpha <- e0 * K_j
log_p_e0 <- priorOnWeights$log_p_e0
}
s0_proposal <- priorOnWeights$param$s0_proposal
N <- nrow(y) # number of observations
r <- ncol(y) # number of dimensions
## initializing current values
invB0 <- chol2inv(chol(B0))
eta_j <- eta
mu_j <- mu
Sigma_j <- Sigma
cholSigma_j <- invSigma_j <- array(0, dim = c(r, r, K_j))
det_invSigma_j <- rep(0, K_j)
for (k in 1:K_j) {
cholSigma_j[, , k] <- chol(Sigma_j[, , k])
invSigma_j[, , k] <- chol2inv(cholSigma_j[, , k])
det_invSigma_j[k] <- 1 / prod(diag(cholSigma_j[, , k]))^2
}
S_j <- S
C0_j <- C0
Nk_j <- tabulate(S_j, K_j)
if (verbose) {
cat("0 ", Nk_j)
}
Kp_j <- sum(Nk_j != 0) ##number of nonempty components
acc <- FALSE
## generating matrices for storing the draws:
result <- list(Eta = matrix(NA_real_, M, Kmax),
Mu = array(NA_real_, dim = c(M, r, Kmax)),
Nk = matrix(NA_integer_, M, Kmax),
S = matrix(NA_integer_, M, N),
K = rep(NA_integer_, M),
Kplus = rep(0L, M),
mixlik = rep(0, M),
mixprior = rep(0, M),
nonnormpost = rep(0, M),
nonnormpost_mode = vector("list", Kmax),
C0 = array(NA_real_, dim = c(M, r, r)),
e0 = rep(NA_real_, M),
alpha = rep(NA_real_, M),
acc = rep(NA, M))
## Initialising the result object
for (k in 1:Kmax) {
result$nonnormpost_mode[[k]] <- list(nonnormpost = -(10)^18)
}
##---------------------- simulation ----------------------------------------------
m <- 1
Mmax <- M * thin
while (m <= Mmax | m <= burnin) {
if (verbose && !(m%%500)) {
cat("\n", m, " ", Nk_j)
}
if (m == burnin) {
m <- 1
burnin <- 0
}
## first step: classify observations and determine new partition
mat <- sapply(1:K_j, function(k)
eta_j[k] * dmvnorm(y, mu_j[, k], as.matrix(Sigma_j[, , k])))
S_j <- apply(mat, 1, function(x) sample(1:K_j, 1, prob = x, replace = TRUE))
##determine partition
Nk_j <- tabulate(S_j, K_j) #length(Nk_j)=K_j
Kp_j <- sum(Nk_j != 0)
##reorder the components
perm <- c(which(Nk_j > 0), which(Nk_j == 0))
mu_j <- mu_j[, perm, drop = FALSE]
Sigma_j <- Sigma_j[,,perm, drop = FALSE]
S_ <- rep(NA_integer_, N)
for (i in 1:length(perm)) {
S_[S_j == i] <- which(perm == i)
}
S_j <- S_
Nk_j <- tabulate(S_j, Kp_j)
## second step: update parameters conditional on partition C=(N_1,...,N_K+):
## (2a) update parameters of filled components
## (i): sample Sigma^{-1} for filled components
Ck <- array(0, dim = c(r, r, Kp_j))
ck <- c0 + Nk_j/2
for (k in 1:Kp_j) {
Ck[, , k] <- C0_j + 0.5 * crossprod(sweep(y[S_j == k, , drop = FALSE],
2, mu_j[,k], FUN = "-"))
sig <- bayesm::rwishart(2 * ck[k], 0.5 * chol2inv(chol(Ck[, , k])))
Sigma_j[, , k] <- sig$IW
invSigma_j[, , k] <- sig$W
det_invSigma_j[k] <- det(as.matrix(invSigma_j[, , k]))
}
## (ii): sample mu_j for filled components
mean_yk <- matrix(sapply(1:Kp_j, function(k) colMeans(y[S_j == k, , drop = FALSE])),
ncol = Kp_j)
Bk <- array(0, dim = c(r, r, Kp_j))
bk <- matrix(0, r, Kp_j)
for (k in 1:Kp_j) {
Bk[, , k] <- chol2inv(chol(invB0 + as.matrix(invSigma_j[, , k]) * Nk_j[k]))
bk[, k] <- as.matrix(Bk[, , k]) %*%
(invB0 %*% b0 + as.matrix(invSigma_j[, , k]) %*% mean_yk[, k] * Nk_j[k])
mu_j[, k] <- t(chol(as.matrix(Bk[, , k]))) %*% rnorm(r) + bk[, k]
}
## (2b) sample hyperparameters conditional on partition
## (i): sample C0
gK <- g0 + Kp_j*c0
C0_j <- bayesm::rwishart(2 * gK,
0.5 * chol2inv(chol(G0 + rowSums(invSigma_j[,, 1:Kp_j, drop = FALSE],
dims = 2))))$W
## third step: sample K and alpha (or e0) conditional on partition
if (G == "MixDynamic") {
## (3a) Sample K, if e0=alpha/K (=dependent on K)
K_j <- sampleK_alpha(Kp_j, Kmax, Nk_j, alpha, log_pK)
## (3b) Sample alpha, if alpha~p(a_alpha,b_alpha)
value <- sampleAlpha(N,Nk_j,K_j,alpha,s0_proposal,log_pAlpha)
alpha <- value$alpha
e0 <- alpha / K_j
acc <- value$acc
} else {
## (3a*) Sample K, if e0 fixed or e0~G(a_e,b_e) (independent of K):
K_j <- sampleK_e0(Kp_j, Kmax, log_pK, log_p_e0, e0, N)
## (3b*) Sample e0, if e0~G(a_e,b_e) (independent of K)
value <- sampleE0(K_j, Kp_j, N, Nk_j, s0_proposal, e0, log_p_e0)
e0 <- value$e0
alpha <- e0 * K_j
acc <- value$acc
}
## fourth step: add empty components conditional on K
## (4a) Add/remove empty components
if (K_j > Kp_j) {
Nk_j <- c(Nk_j[1:Kp_j],rep(0,(K_j-Kp_j))) #length(Nk_j)=K_j
invSigma_e <- array(NA, dim = c(r, r, K_j-Kp_j))
invSigma_j <- abind::abind(invSigma_j[,, 1:Kp_j, drop = FALSE],
invSigma_e, along = 3)
Sigma_e <- array(NA, dim = c(r, r, K_j-Kp_j))
Sigma_j <- abind::abind(Sigma_j[,, 1:Kp_j, drop = FALSE],
Sigma_e, along = 3)
mu_j <- cbind(mu_j[, 1:Kp_j, drop = FALSE],
matrix(0, r, K_j - Kp_j))
det_invSigma_j <- c(det_invSigma_j[1:Kp_j],
rep(0, K_j - Kp_j))
for(k in (Kp_j+1):K_j) {
sig <- bayesm::rwishart(2 * c0, 0.5 * chol2inv(chol(C0_j)))
#attention: rwishart(nu,v)(Rossi)=> nu=2*c0,v=0.5*C0, wishart(c0,C0) (FS)
Sigma_j[, , k] <- sig$IW
invSigma_j[, , k] <- sig$W
det_invSigma_j[k] <- det(as.matrix(invSigma_j[, , k]))
mu_j[, k] <- t(chol((B0))) %*% rnorm(r) + b0
}
}else{
invSigma_j <- invSigma_j[,, 1:K_j, drop = FALSE]
Sigma_j <- Sigma_j[,, 1:K_j, drop = FALSE]
mu_j <- mu_j[, 1:K_j, drop = FALSE]
det_invSigma_j <- det_invSigma_j[1:K_j]
}
## (4b): Sample eta_j:
ek <- e0 + Nk_j
eta_j <- MCMCpack::rdirichlet(1,ek)
## fifth step: evaluating the mixture likelihood and storing the values
## evaluating the mixture likelihood:
mat_neu <- sapply(1:K_j, function(k) eta_j[k] * dmvnorm(y, mu_j[, k], as.matrix(Sigma_j[, , k])))
mixlik_j <- sum(log(rowSums(mat_neu)))
## evaluating the mixture prior:
mixprior_j <- log(MCMCpack::ddirichlet(as.vector(eta_j), rep(e0, K_j))) +
sum(dmvnorm(t(mu_j),b0, B0, log = TRUE))
sum(sapply(1:K_j, function(k) bayesm::lndIWishart(2 * c0,0.5 * C0_j, as.matrix(Sigma_j[, , k])))) +
bayesm::lndIWishart(2 * g0, 0.5 * G0, C0_j) + #ATTENTION!
log_pK(K_j)
if (burnin == 0) {
result$mixlik[m] <- mixlik_j
result$mixprior[m] <- mixprior_j
result$nonnormpost[m] <- result$mixlik[m] + result$mixprior[m]
}
## storing the nonnormalized posterior for having good starting points
## when clustering the draws in the point process representation
if ((burnin == 0) && (result$nonnormpost[m] > result$nonnormpost_mode[[Kp_j]]$nonnormpost)) {
result$nonnormpost_mode[[Kp_j]] <- list(nonnormpost = result$nonnormpost[m],
mu = mu_j[,Nk_j != 0],
Sigma = Sigma_j[,,Nk_j != 0],
bk = bk,
Bk = Bk,
eta = eta_j[Nk_j != 0])
}
## storing the draws
if ((burnin == 0)&!(m%%thin)) {
result$Mu[m/thin, , 1:K_j] <- mu_j
result$Eta[m/thin, 1:K_j] <- eta_j
result$S[m/thin, ] <- S_j
result$Nk[m/thin, 1:K_j] <- Nk_j
result$K[m/thin] <- K_j
result$Kplus[m/thin] <- Kp_j
result$C0[m/thin,,] <- C0_j
result$e0[m/thin] <- e0
result$alpha[m/thin] <- alpha
result$acc[m/thin] <- acc
}
m <- m + 1
}
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.