as_array | Converts to array |
autograd_backward | Computes the sum of gradients of given tensors w.r.t. graph... |
AutogradContext | Class representing the context. |
autograd_function | Records operation history and defines formulas for... |
autograd_grad | Computes and returns the sum of gradients of outputs w.r.t.... |
autograd_set_grad_mode | Set grad mode |
backends_cudnn_is_available | CuDNN is available |
backends_cudnn_version | CuDNN version |
backends_mkldnn_is_available | MKLDNN is available |
backends_mkl_is_available | MKL is available |
backends_mps_is_available | MPS is available |
backends_openmp_is_available | OpenMP is available |
broadcast_all | Given a list of values (possibly containing numbers), returns... |
call_torch_function | Call a (Potentially Unexported) Torch Function |
clone_module | Clone a torch module. |
Constraint | Abstract base class for constraints. |
contrib_sort_vertices | Contrib sort vertices |
cuda_amp_grad_scaler | Creates a gradient scaler |
cuda_current_device | Returns the index of a currently selected device. |
cuda_device_count | Returns the number of GPUs available. |
cuda_empty_cache | Empty cache |
cuda_get_device_capability | Returns the major and minor CUDA capability of 'device' |
cuda_is_available | Returns a bool indicating if CUDA is currently available. |
cuda_memory_stats | Returns a dictionary of CUDA memory allocator statistics for... |
cuda_runtime_version | Returns the CUDA runtime version |
cuda_synchronize | Waits for all kernels in all streams on a CUDA device to... |
dataloader | Data loader. Combines a dataset and a sampler, and provides... |
dataloader_make_iter | Creates an iterator from a DataLoader |
dataloader_next | Get the next element of a dataloader iterator |
dataset | Helper function to create an function that generates R6... |
dataset_subset | Dataset Subset |
default_dtype | Gets and sets the default floating point dtype. |
distr_bernoulli | Creates a Bernoulli distribution parameterized by 'probs' or... |
distr_categorical | Creates a categorical distribution parameterized by either... |
distr_chi2 | Creates a Chi2 distribution parameterized by shape parameter... |
distr_gamma | Creates a Gamma distribution parameterized by shape... |
Distribution | Generic R6 class representing distributions |
distr_mixture_same_family | Mixture of components in the same family |
distr_multivariate_normal | Gaussian distribution |
distr_normal | Creates a normal (also called Gaussian) distribution... |
distr_poisson | Creates a Poisson distribution parameterized by 'rate', the... |
enumerate | Enumerate an iterator |
enumerate.dataloader | Enumerate an iterator |
install_torch | Install Torch |
install_torch_from_file | Install Torch from files |
is_dataloader | Checks if the object is a dataloader |
is_nn_buffer | Checks if the object is a nn_buffer |
is_nn_module | Checks if the object is an nn_module |
is_nn_parameter | Checks if an object is a nn_parameter |
is_optimizer | Checks if the object is a torch optimizer |
is_torch_device | Checks if object is a device |
is_torch_dtype | Check if object is a torch data type |
is_torch_layout | Check if an object is a torch layout. |
is_torch_memory_format | Check if an object is a memory format |
is_torch_qscheme | Checks if an object is a QScheme |
is_undefined_tensor | Checks if a tensor is undefined |
iterable_dataset | Creates an iterable dataset |
jit_compile | Compile TorchScript code into a graph |
jit_load | Loads a 'script_function' or 'script_module' previously saved... |
jit_ops | Enable idiomatic access to JIT operators from R. |
jit_save | Saves a 'script_function' to a path |
jit_save_for_mobile | Saves a 'script_function' or 'script_module' in bytecode... |
jit_scalar | Adds the 'jit_scalar' class to the input |
jit_trace | Trace a function and return an executable 'script_function'. |
jit_trace_module | Trace a module |
jit_tuple | Adds the 'jit_tuple' class to the input |
linalg_cholesky_ex | Computes the Cholesky decomposition of a complex Hermitian or... |
linalg_det | Computes the determinant of a square matrix. |
linalg_inv_ex | Computes the inverse of a square matrix if it is invertible. |
linalg_matrix_norm | Computes a matrix norm. |
linalg_matrix_power | Computes the 'n'-th power of a square matrix for an integer... |
linalg_norm | Computes a vector or matrix norm. |
linalg_pinv | Computes the pseudoinverse (Moore-Penrose inverse) of a... |
linalg_slogdet | Computes the sign and natural logarithm of the absolute value... |
linalg_solve | Computes the solution of a square system of linear equations... |
linalg_solve_triangular | Triangular solve |
linalg_svdvals | Computes the singular values of a matrix. |
linalg_tensorinv | Computes the multiplicative inverse of 'torch_tensordot()' |
linalg_tensorsolve | Computes the solution 'X' to the system 'torch_tensordot(A,... |
linalg_vector_norm | Computes a vector norm. |
load_state_dict | Load a state dict file |
local_autocast | Autocast context manager |
local_device | Device contexts |
lr_cosine_annealing | Set the learning rate of each parameter group using a cosine... |
lr_lambda | Sets the learning rate of each parameter group to the initial... |
lr_multiplicative | Multiply the learning rate of each parameter group by the... |
lr_one_cycle | Once cycle learning rate |
lr_reduce_on_plateau | Reduce learning rate on plateau |
lr_scheduler | Creates learning rate schedulers |
lr_step | Step learning rate decay |
nn_adaptive_avg_pool1d | Applies a 1D adaptive average pooling over an input signal... |
nn_adaptive_avg_pool2d | Applies a 2D adaptive average pooling over an input signal... |
nn_adaptive_avg_pool3d | Applies a 3D adaptive average pooling over an input signal... |
nn_adaptive_log_softmax_with_loss | AdaptiveLogSoftmaxWithLoss module |
nn_adaptive_max_pool1d | Applies a 1D adaptive max pooling over an input signal... |
nn_adaptive_max_pool2d | Applies a 2D adaptive max pooling over an input signal... |
nn_adaptive_max_pool3d | Applies a 3D adaptive max pooling over an input signal... |
nn_avg_pool1d | Applies a 1D average pooling over an input signal composed of... |
nn_avg_pool2d | Applies a 2D average pooling over an input signal composed of... |
nn_avg_pool3d | Applies a 3D average pooling over an input signal composed of... |
nn_batch_norm1d | BatchNorm1D module |
nn_batch_norm2d | BatchNorm2D |
nn_batch_norm3d | BatchNorm3D |
nn_bce_loss | Binary cross entropy loss |
nn_bce_with_logits_loss | BCE with logits loss |
nn_bilinear | Bilinear module |
nn_buffer | Creates a nn_buffer |
nn_celu | CELU module |
nn_contrib_sparsemax | Sparsemax activation |
nn_conv1d | Conv1D module |
nn_conv2d | Conv2D module |
nn_conv3d | Conv3D module |
nn_conv_transpose1d | ConvTranspose1D |
nn_conv_transpose2d | ConvTranpose2D module |
nn_conv_transpose3d | ConvTranpose3D module |
nn_cosine_embedding_loss | Cosine embedding loss |
nn_cross_entropy_loss | CrossEntropyLoss module |
nn_ctc_loss | The Connectionist Temporal Classification loss. |
nn_dropout | Dropout module |
nn_dropout2d | Dropout2D module |
nn_dropout3d | Dropout3D module |
nn_elu | ELU module |
nn_embedding | Embedding module |
nn_embedding_bag | Embedding bag module |
nnf_adaptive_avg_pool1d | Adaptive_avg_pool1d |
nnf_adaptive_avg_pool2d | Adaptive_avg_pool2d |
nnf_adaptive_avg_pool3d | Adaptive_avg_pool3d |
nnf_adaptive_max_pool1d | Adaptive_max_pool1d |
nnf_adaptive_max_pool2d | Adaptive_max_pool2d |
nnf_adaptive_max_pool3d | Adaptive_max_pool3d |
nnf_affine_grid | Affine_grid |
nnf_alpha_dropout | Alpha_dropout |
nnf_avg_pool1d | Avg_pool1d |
nnf_avg_pool2d | Avg_pool2d |
nnf_avg_pool3d | Avg_pool3d |
nnf_batch_norm | Batch_norm |
nnf_bilinear | Bilinear |
nnf_binary_cross_entropy | Binary_cross_entropy |
nnf_binary_cross_entropy_with_logits | Binary_cross_entropy_with_logits |
nnf_celu | Celu |
nnf_contrib_sparsemax | Sparsemax |
nnf_conv1d | Conv1d |
nnf_conv2d | Conv2d |
nnf_conv3d | Conv3d |
nnf_conv_tbc | Conv_tbc |
nnf_conv_transpose1d | Conv_transpose1d |
nnf_conv_transpose2d | Conv_transpose2d |
nnf_conv_transpose3d | Conv_transpose3d |
nnf_cosine_embedding_loss | Cosine_embedding_loss |
nnf_cosine_similarity | Cosine_similarity |
nnf_cross_entropy | Cross_entropy |
nnf_ctc_loss | Ctc_loss |
nnf_dropout | Dropout |
nnf_dropout2d | Dropout2d |
nnf_dropout3d | Dropout3d |
nnf_elu | Elu |
nnf_embedding | Embedding |
nnf_embedding_bag | Embedding_bag |
nnf_fold | Fold |
nnf_fractional_max_pool2d | Fractional_max_pool2d |
nnf_fractional_max_pool3d | Fractional_max_pool3d |
nnf_gelu | Gelu |
nnf_glu | Glu |
nnf_grid_sample | Grid_sample |
nnf_group_norm | Group_norm |
nnf_gumbel_softmax | Gumbel_softmax |
nnf_hardshrink | Hardshrink |
nnf_hardsigmoid | Hardsigmoid |
nnf_hardswish | Hardswish |
nnf_hardtanh | Hardtanh |
nnf_hinge_embedding_loss | Hinge_embedding_loss |
nnf_instance_norm | Instance_norm |
nnf_interpolate | Interpolate |
nnf_kl_div | Kl_div |
nnf_l1_loss | L1_loss |
nn_flatten | Flattens a contiguous range of dims into a tensor. |
nnf_layer_norm | Layer_norm |
nnf_leaky_relu | Leaky_relu |
nnf_linear | Linear |
nnf_local_response_norm | Local_response_norm |
nnf_logsigmoid | Logsigmoid |
nnf_log_softmax | Log_softmax |
nnf_lp_pool1d | Lp_pool1d |
nnf_lp_pool2d | Lp_pool2d |
nnf_margin_ranking_loss | Margin_ranking_loss |
nnf_max_pool1d | Max_pool1d |
nnf_max_pool2d | Max_pool2d |
nnf_max_pool3d | Max_pool3d |
nnf_max_unpool1d | Max_unpool1d |
nnf_max_unpool2d | Max_unpool2d |
nnf_max_unpool3d | Max_unpool3d |
nnf_mse_loss | Mse_loss |
nnf_multi_head_attention_forward | Multi head attention forward |
nnf_multilabel_margin_loss | Multilabel_margin_loss |
nnf_multilabel_soft_margin_loss | Multilabel_soft_margin_loss |
nnf_multi_margin_loss | Multi_margin_loss |
nnf_nll_loss | Nll_loss |
nnf_normalize | Normalize |
nnf_one_hot | One_hot |
nnf_pad | Pad |
nnf_pairwise_distance | Pairwise_distance |
nnf_pdist | Pdist |
nnf_pixel_shuffle | Pixel_shuffle |
nnf_poisson_nll_loss | Poisson_nll_loss |
nnf_prelu | Prelu |
nn_fractional_max_pool2d | Applies a 2D fractional max pooling over an input signal... |
nn_fractional_max_pool3d | Applies a 3D fractional max pooling over an input signal... |
nnf_relu | Relu |
nnf_relu6 | Relu6 |
nnf_rrelu | Rrelu |
nnf_selu | Selu |
nnf_sigmoid | Sigmoid |
nnf_silu | Applies the Sigmoid Linear Unit (SiLU) function,... |
nnf_smooth_l1_loss | Smooth_l1_loss |
nnf_soft_margin_loss | Soft_margin_loss |
nnf_softmax | Softmax |
nnf_softmin | Softmin |
nnf_softplus | Softplus |
nnf_softshrink | Softshrink |
nnf_softsign | Softsign |
nnf_tanhshrink | Tanhshrink |
nnf_threshold | Threshold |
nnf_triplet_margin_loss | Triplet_margin_loss |
nnf_triplet_margin_with_distance_loss | Triplet margin with distance loss |
nnf_unfold | Unfold |
nn_gelu | GELU module |
nn_glu | GLU module |
nn_group_norm | Group normalization |
nn_gru | Applies a multi-layer gated recurrent unit (GRU) RNN to an... |
nn_hardshrink | Hardshwink module |
nn_hardsigmoid | Hardsigmoid module |
nn_hardswish | Hardswish module |
nn_hardtanh | Hardtanh module |
nn_hinge_embedding_loss | Hinge embedding loss |
nn_identity | Identity module |
nn_init_calculate_gain | Calculate gain |
nn_init_constant_ | Constant initialization |
nn_init_dirac_ | Dirac initialization |
nn_init_eye_ | Eye initialization |
nn_init_kaiming_normal_ | Kaiming normal initialization |
nn_init_kaiming_uniform_ | Kaiming uniform initialization |
nn_init_normal_ | Normal initialization |
nn_init_ones_ | Ones initialization |
nn_init_orthogonal_ | Orthogonal initialization |
nn_init_sparse_ | Sparse initialization |
nn_init_trunc_normal_ | Truncated normal initialization |
nn_init_uniform_ | Uniform initialization |
nn_init_xavier_normal_ | Xavier normal initialization |
nn_init_xavier_uniform_ | Xavier uniform initialization |
nn_init_zeros_ | Zeros initialization |
nn_kl_div_loss | Kullback-Leibler divergence loss |
nn_l1_loss | L1 loss |
nn_layer_norm | Layer normalization |
nn_leaky_relu | LeakyReLU module |
nn_linear | Linear module |
nn_log_sigmoid | LogSigmoid module |
nn_log_softmax | LogSoftmax module |
nn_lp_pool1d | Applies a 1D power-average pooling over an input signal... |
nn_lp_pool2d | Applies a 2D power-average pooling over an input signal... |
nn_lstm | Applies a multi-layer long short-term memory (LSTM) RNN to an... |
nn_margin_ranking_loss | Margin ranking loss |
nn_max_pool1d | MaxPool1D module |
nn_max_pool2d | MaxPool2D module |
nn_max_pool3d | Applies a 3D max pooling over an input signal composed of... |
nn_max_unpool1d | Computes a partial inverse of 'MaxPool1d'. |
nn_max_unpool2d | Computes a partial inverse of 'MaxPool2d'. |
nn_max_unpool3d | Computes a partial inverse of 'MaxPool3d'. |
nn_module | Base class for all neural network modules. |
nn_module_dict | Container that allows named values |
nn_module_list | Holds submodules in a list. |
nn_mse_loss | MSE loss |
nn_multihead_attention | MultiHead attention |
nn_multilabel_margin_loss | Multilabel margin loss |
nn_multilabel_soft_margin_loss | Multi label soft margin loss |
nn_multi_margin_loss | Multi margin loss |
nn_nll_loss | Nll loss |
nn_pairwise_distance | Pairwise distance |
nn_parameter | Creates an 'nn_parameter' |
nn_poisson_nll_loss | Poisson NLL loss |
nn_prelu | PReLU module |
nn_prune_head | Prune top layer(s) of a network |
nn_relu | ReLU module |
nn_relu6 | ReLu6 module |
nn_rnn | RNN module |
nn_rrelu | RReLU module |
nn_selu | SELU module |
nn_sequential | A sequential container |
nn_sigmoid | Sigmoid module |
nn_silu | Applies the Sigmoid Linear Unit (SiLU) function,... |
nn_smooth_l1_loss | Smooth L1 loss |
nn_soft_margin_loss | Soft margin loss |
nn_softmax | Softmax module |
nn_softmax2d | Softmax2d module |
nn_softmin | Softmin |
nn_softplus | Softplus module |
nn_softshrink | Softshrink module |
nn_softsign | Softsign module |
nn_tanh | Tanh module |
nn_tanhshrink | Tanhshrink module |
nn_threshold | Threshold module |
nn_triplet_margin_loss | Triplet margin loss |
nn_triplet_margin_with_distance_loss | Triplet margin with distance loss |
nn_unflatten | Unflattens a tensor dim expanding it to a desired shape. For... |
nn_upsample | Upsample module |
nn_utils_clip_grad_norm_ | Clips gradient norm of an iterable of parameters. |
nn_utils_clip_grad_value_ | Clips gradient of an iterable of parameters at specified... |
nn_utils_rnn_pack_padded_sequence | Packs a Tensor containing padded sequences of variable... |
nn_utils_rnn_pack_sequence | Packs a list of variable length Tensors |
nn_utils_rnn_pad_packed_sequence | Pads a packed batch of variable length sequences. |
nn_utils_rnn_pad_sequence | Pad a list of variable length Tensors with 'padding_value' |
nn_utils_weight_norm | nn_utils_weight_norm |
optim_adadelta | Adadelta optimizer |
optim_adagrad | Adagrad optimizer |
optim_adam | Implements Adam algorithm. |
optim_adamw | Implements AdamW algorithm |
optim_asgd | Averaged Stochastic Gradient Descent optimizer |
optimizer | Creates a custom optimizer |
optim_lbfgs | LBFGS optimizer |
optim_required | Dummy value indicating a required value. |
optim_rmsprop | RMSprop optimizer |
optim_rprop | Implements the resilient backpropagation algorithm. |
optim_sgd | SGD optimizer |
pipe | Pipe operator |
reexports | Re-exporting the as_iterator function. |
sampler | Creates a new Sampler |
slc | Creates a slice |
tensor_dataset | Dataset wrapping tensors. |
threads | Number of threads |
torch_abs | Abs |
torch_absolute | Absolute |
torch_acos | Acos |
torch_acosh | Acosh |
torch_adaptive_avg_pool1d | Adaptive_avg_pool1d |
torch_add | Add |
torch_addbmm | Addbmm |
torch_addcdiv | Addcdiv |
torch_addcmul | Addcmul |
torch_addmm | Addmm |
torch_addmv | Addmv |
torch_addr | Addr |
torch_allclose | Allclose |
torch_amax | Amax |
torch_amin | Amin |
torch_angle | Angle |
torch_arange | Arange |
torch_arccos | Arccos |
torch_arccosh | Arccosh |
torch_arcsin | Arcsin |
torch_arcsinh | Arcsinh |
torch_arctan | Arctan |
torch_arctanh | Arctanh |
torch_argmax | Argmax |
torch_argmin | Argmin |
torch_argsort | Argsort |
torch_asin | Asin |
torch_asinh | Asinh |
torch_as_strided | As_strided |
torch_atan | Atan |
torch_atan2 | Atan2 |
torch_atanh | Atanh |
torch_atleast_1d | Atleast_1d |
torch_atleast_2d | Atleast_2d |
torch_atleast_3d | Atleast_3d |
torch_avg_pool1d | Avg_pool1d |
torch_baddbmm | Baddbmm |
torch_bartlett_window | Bartlett_window |
torch_bernoulli | Bernoulli |
torch_bincount | Bincount |
torch_bitwise_and | Bitwise_and |
torch_bitwise_not | Bitwise_not |
torch_bitwise_or | Bitwise_or |
torch_bitwise_xor | Bitwise_xor |
torch_blackman_window | Blackman_window |
torch_block_diag | Block_diag |
torch_bmm | Bmm |
torch_broadcast_tensors | Broadcast_tensors |
torch_bucketize | Bucketize |
torch_can_cast | Can_cast |
torch_cartesian_prod | Cartesian_prod |
torch_cat | Cat |
torch_cdist | Cdist |
torch_ceil | Ceil |
torch_celu | Celu |
torch_celu_ | Celu_ |
torch_chain_matmul | Chain_matmul |
torch_channel_shuffle | Channel_shuffle |
torch_cholesky | Cholesky |
torch_cholesky_inverse | Cholesky_inverse |
torch_cholesky_solve | Cholesky_solve |
torch_chunk | Chunk |
torch_clamp | Clamp |
torch_clip | Clip |
torch_clone | Clone |
torch_combinations | Combinations |
torch_complex | Complex |
torch_conj | Conj |
torch_conv1d | Conv1d |
torch_conv2d | Conv2d |
torch_conv3d | Conv3d |
torch_conv_tbc | Conv_tbc |
torch_conv_transpose1d | Conv_transpose1d |
torch_conv_transpose2d | Conv_transpose2d |
torch_conv_transpose3d | Conv_transpose3d |
torch_cos | Cos |
torch_cosh | Cosh |
torch_cosine_similarity | Cosine_similarity |
torch_count_nonzero | Count_nonzero |
torch_cross | Cross |
torch_cummax | Cummax |
torch_cummin | Cummin |
torch_cumprod | Cumprod |
torch_cumsum | Cumsum |
torch_deg2rad | Deg2rad |
torch_dequantize | Dequantize |
torch_det | Det |
torch_device | Create a Device object |
torch_diag | Diag |
torch_diag_embed | Diag_embed |
torch_diagflat | Diagflat |
torch_diagonal | Diagonal |
torch_diff | Computes the n-th forward difference along the given... |
torch_digamma | Digamma |
torch_dist | Dist |
torch_div | Div |
torch_divide | Divide |
torch_dot | Dot |
torch_dstack | Dstack |
torch_dtype | Torch data types |
torch_eig | Eig |
torch_einsum | Einsum |
torch_empty | Empty |
torch_empty_like | Empty_like |
torch_empty_strided | Empty_strided |
torch_eq | Eq |
torch_equal | Equal |
torch_erf | Erf |
torch_erfc | Erfc |
torch_erfinv | Erfinv |
torch_exp | Exp |
torch_exp2 | Exp2 |
torch_expm1 | Expm1 |
torch_eye | Eye |
torch_fft_fft | Fft |
torch_fft_fftfreq | fftfreq |
torch_fft_ifft | Ifft |
torch_fft_irfft | Irfft |
torch_fft_rfft | Rfft |
torch_finfo | Floating point type info |
torch_fix | Fix |
torch_flatten | Flatten |
torch_flip | Flip |
torch_fliplr | Fliplr |
torch_flipud | Flipud |
torch_floor | Floor |
torch_floor_divide | Floor_divide |
torch_fmod | Fmod |
torch_frac | Frac |
torch_full | Full |
torch_full_like | Full_like |
torch_gather | Gather |
torch_gcd | Gcd |
torch_ge | Ge |
torch_generator | Create a Generator object |
torch_geqrf | Geqrf |
torch_ger | Ger |
torch_get_rng_state | RNG state management |
torch_greater | Greater |
torch_greater_equal | Greater_equal |
torch_gt | Gt |
torch_hamming_window | Hamming_window |
torch_hann_window | Hann_window |
torch_heaviside | Heaviside |
torch_histc | Histc |
torch_hstack | Hstack |
torch_hypot | Hypot |
torch_i0 | I0 |
torch_iinfo | Integer type info |
torch_imag | Imag |
torch_index | Index torch tensors |
torch_index_put | Modify values selected by 'indices'. |
torch_index_put_ | In-place version of 'torch_index_put'. |
torch_index_select | Index_select |
torch_install_path | A simple exported version of install_path Returns the torch... |
torch_inverse | Inverse |
torch_isclose | Isclose |
torch_is_complex | Is_complex |
torch_isfinite | Isfinite |
torch_is_floating_point | Is_floating_point |
torch_isinf | Isinf |
torch_is_installed | Verifies if torch is installed |
torch_isnan | Isnan |
torch_isneginf | Isneginf |
torch_is_nonzero | Is_nonzero |
torch_isposinf | Isposinf |
torch_isreal | Isreal |
torch_istft | Istft |
torch_kaiser_window | Kaiser_window |
torch_kron | Kronecker product |
torch_kthvalue | Kthvalue |
torch_layout | Creates the corresponding layout |
torch_lcm | Lcm |
torch_le | Le |
torch_lerp | Lerp |
torch_less | Less |
torch_less_equal | Less_equal |
torch_lgamma | Lgamma |
torch_linspace | Linspace |
torch_load | Loads a saved object |
torch_log | Log |
torch_log10 | Log10 |
torch_log1p | Log1p |
torch_log2 | Log2 |
torch_logaddexp | Logaddexp |
torch_logaddexp2 | Logaddexp2 |
torch_logcumsumexp | Logcumsumexp |
torch_logdet | Logdet |
torch_logical_and | Logical_and |
torch_logical_not | Logical_not |
torch_logical_or | Logical_or |
torch_logical_xor | Logical_xor |
torch_logit | Logit |
torch_logspace | Logspace |
torch_logsumexp | Logsumexp |
torch_lstsq | Lstsq |
torch_lt | Lt |
torch_lu | LU |
torch_lu_solve | Lu_solve |
torch_lu_unpack | Lu_unpack |
torch_manual_seed | Sets the seed for generating random numbers. |
torch_masked_select | Masked_select |
torch_matmul | Matmul |
torch_matrix_exp | Matrix_exp |
torch_matrix_power | Matrix_power |
torch_matrix_rank | Matrix_rank |
torch_max | Max |
torch_maximum | Maximum |
torch_mean | Mean |
torch_median | Median |
torch_memory_format | Memory format |
torch_meshgrid | Meshgrid |
torch_min | Min |
torch_minimum | Minimum |
torch_mm | Mm |
torch_mode | Mode |
torch_movedim | Movedim |
torch_mul | Mul |
torch_multinomial | Multinomial |
torch_multiply | Multiply |
torch_mv | Mv |
torch_mvlgamma | Mvlgamma |
torch_nanquantile | Nanquantile |
torch_nansum | Nansum |
torch_narrow | Narrow |
torch_ne | Ne |
torch_neg | Neg |
torch_negative | Negative |
torch_nextafter | Nextafter |
torch_nonzero | Nonzero |
torch_norm | Norm |
torch_normal | Normal |
torch_not_equal | Not_equal |
torch_ones | Ones |
torch_ones_like | Ones_like |
torch_orgqr | Orgqr |
torch_ormqr | Ormqr |
torch_outer | Outer |
torch_pdist | Pdist |
torch_pinverse | Pinverse |
torch_pixel_shuffle | Pixel_shuffle |
torch_poisson | Poisson |
torch_polar | Polar |
torch_polygamma | Polygamma |
torch_pow | Pow |
torch_prod | Prod |
torch_promote_types | Promote_types |
torch_qr | Qr |
torch_qscheme | Creates the corresponding Scheme object |
torch_quantile | Quantile |
torch_quantize_per_channel | Quantize_per_channel |
torch_quantize_per_tensor | Quantize_per_tensor |
torch_rad2deg | Rad2deg |
torch_rand | Rand |
torch_randint | Randint |
torch_randint_like | Randint_like |
torch_rand_like | Rand_like |
torch_randn | Randn |
torch_randn_like | Randn_like |
torch_randperm | Randperm |
torch_range | Range |
torch_real | Real |
torch_reciprocal | Reciprocal |
torch_reduction | Creates the reduction objet |
torch_relu | Relu |
torch_relu_ | Relu_ |
torch_remainder | Remainder |
torch_renorm | Renorm |
torch_repeat_interleave | Repeat_interleave |
torch_reshape | Reshape |
torch_result_type | Result_type |
torch_roll | Roll |
torch_rot90 | Rot90 |
torch_round | Round |
torch_rrelu_ | Rrelu_ |
torch_rsqrt | Rsqrt |
torch_save | Saves an object to a disk file. |
torch_scalar_tensor | Scalar tensor |
torch_searchsorted | Searchsorted |
torch_selu | Selu |
torch_selu_ | Selu_ |
torch_serialize | Serialize a torch object returning a raw object |
torch_sgn | Sgn |
torch_sigmoid | Sigmoid |
torch_sign | Sign |
torch_signbit | Signbit |
torch_sin | Sin |
torch_sinh | Sinh |
torch_slogdet | Slogdet |
torch_sort | Sort |
torch_sparse_coo_tensor | Sparse_coo_tensor |
torch_split | Split |
torch_sqrt | Sqrt |
torch_square | Square |
torch_squeeze | Squeeze |
torch_stack | Stack |
torch_std | Std |
torch_std_mean | Std_mean |
torch_stft | Stft |
torch_sub | Sub |
torch_subtract | Subtract |
torch_sum | Sum |
torch_svd | Svd |
torch_t | T |
torch_take | Take |
torch_tan | Tan |
torch_tanh | Tanh |
torch_tensor | Converts R objects to a torch tensor |
torch_tensordot | Tensordot |
torch_tensor_from_buffer | Creates a tensor from a buffer of memory |
torch_threshold_ | Threshold_ |
torch_topk | Topk |
torch_trace | Trace |
torch_transpose | Transpose |
torch_trapz | Trapz |
torch_triangular_solve | Triangular_solve |
torch_tril | Tril |
torch_tril_indices | Tril_indices |
torch_triu | Triu |
torch_triu_indices | Triu_indices |
torch_true_divide | TRUE_divide |
torch_trunc | Trunc |
torch_unbind | Unbind |
torch_unique_consecutive | Unique_consecutive |
torch_unsafe_chunk | Unsafe_chunk |
torch_unsafe_split | Unsafe_split |
torch_unsqueeze | Unsqueeze |
torch_vander | Vander |
torch_var | Var |
torch_var_mean | Var_mean |
torch_vdot | Vdot |
torch_view_as_complex | View_as_complex |
torch_view_as_real | View_as_real |
torch_vstack | Vstack |
torch_where | Where |
torch_zeros | Zeros |
torch_zeros_like | Zeros_like |
with_detect_anomaly | Context-manager that enable anomaly detection for the... |
with_enable_grad | Enable grad |
with_no_grad | Temporarily modify gradient recording. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.