R/predict_rolling.R

Defines functions predict_rolling.ets predict_rolling.Arima predict_rolling_fcstpkg simplify2df predict_rolling.nlar predict_rolling.nlVar predict_rolling_1step.nlVar

Documented in predict_rolling.nlVar

#'Rolling forecasts
#'
#'Forecasts a VAR or VECM by discarding a part of the sample, and recursively generating a
#'series of updated forecasts.
#'
#'This function allows to check the out-of sample forecasting accuracy by
#'estimating the model on a sub-sample of the original, then making
#'\code{nroll} forecasts of horizon \code{n.ahead}, each time by updating the
#'sample. In other words, with a given model estimated on 100 observations, the
#'function will estimate it on say 90 first obs (\code{nroll=10}), generate a
#'say 1 step-ahead (\code{n.ahead=1}) from obs 90, then using true value 91 for 
#' to predict value at 92, etc, till the full sample is used.  
#'
#'Unlike with usual \command{predict()} methods, specifiying \code{n.ahead=2} will
#'not generate a 1 step-ahead and a 2 step-ahead forecasts, but only
#'\code{nroll} 2 step-ahead forecasts.
#'
#'Note that while the forecasts are updated with new values, the model
#'estimation is (by default) not updated. This can however be done with the
#'argument \code{fit.every}, specifiying at which frequency the model should be
#'re-estimated. By setting it to 1 for example, each time a new observation is
#'taken, the model is reestimated. This is similar to the
#'\code{\link[rugarch]{ugarchroll}} in package \pkg{rugarch}.
#'
#'@aliases predict_rolling
#'@param object A linear object of class \sQuote{\code{nlVar}}; generated by
#'\code{\link{lineVar}} or \code{\link{VECM}}.
#'@param nroll The number of rolling forecasts
#'@param n.ahead An integer specifying the number of forecast steps.
#'@param refit.every Determines every how many periods the model is
#'re-estimated.
#'@param newdata In case the given model is already estimated on the
#'sub-sample, the out-of-sample data can be provided with this argument. Note it should contain
#'observations to predict the first values, that are also contained in the
#'in-sample.
#'@param \dots Currently not used.
#'@return A matrix containing the forecasts.
#'@author Matthieu Stigler
#'@seealso \code{\link{predict.nlar}} for the standard predict function.
#'@keywords predict
#'@examples
#'
#'
#'data(barry)
#'
#'## model estimated on full sample:
#'mod_vec <- VECM(barry, lag=2)
#'
#'## generate 10 1-step-ahead forecasts:
#'preds_roll <- predict_rolling(mod_vec, nroll=10)
#'
#'## plot the results:
#'plot(window(barry[,"dolcan"],start=1998), type="l", ylab="barry: dolcan")
#'preds_roll_ts <- ts(preds_roll$pred, start=time(barry)[nrow(barry)-10], freq=12)
#'lines(preds_roll_ts[,"dolcan"], col=2, lty=2)
#'legend("bottomright", lty=c(1,2), col=1:2, leg=c("True", "Fitted"))
#'title("Comparison of true and rolling 1-ahead forecasts\n")
#'
#'
#' @importFrom forecast Arima ets forecast
#' @export
predict_rolling  <- function (object, ...)  
  UseMethod("predict_rolling")

#' @export
predict_rolling.default  <- function (object, ...)  NULL



predict_rolling_1step.nlVar <- function(object, nroll=10, n.ahead=1, refit.every, newdata, ...){

## Checks
  if(!missing(refit.every)&&refit.every>nroll) stop("arg 'refit.every' should be smaller or equal to arg 'nroll'")
  if(inherits(ts, c("TVECM", "TVAR"))) stop("predict() not implemented for TVECM/TVAR")

## infos on model
  model <- attr(object, "model")
  k <- object$k
  hasExo <- object$exogen
  origSerie <- object$model[,1:k]
  lag <- object$lag
  include <- object$include

## Create Refit (modfit) function:
  if(model=="VAR"){
    level <- attr(object, "varsLevel")
    modFit <- function(dat) lineVar(dat, lag=lag, include=include, I=level)
    add <- if(level=="level") 0 else 1
  } else {
    r <- object$model.specific$r
    estim <- object$model.specific$estim
    if(estim =="OLS") estim <- "2OLS"
    LRinclude <- object$model.specific$LRinclude
    modFit <- function(dat) VECM(dat,   lag=lag, include=include, estim=estim, r=r, LRinclude=LRinclude)
    add <- 1
  }


## Set refit.every
  everys <-  if(!missing(refit.every)&&refit.every!=0) seq(refit.every, by=refit.every, to=nroll) else 0

## Fit initial model
  if(missing(newdata)){
    newdat <- FALSE
    subSerie <- myHead(origSerie, -nroll)
    outSerie <- myTail(origSerie, nroll+lag+add)
    fullSerie <- origSerie
    mod <- modFit(subSerie)
    T <- object$T
  } else {
    newdat <- TRUE
    subSerie <- origSerie
    outSerie <- newdata
    fullSerie <- rbind(origSerie, newdata)
    T <- nrow(fullSerie)
    mod <- object
  }

  n_out <- nrow(outSerie)

## Refit model on smaller sample:
  R <- matrix(0, ncol=k, nrow=nroll)
  colnames(R) <- colnames(origSerie)

  for(i in 1:nroll){
  ## model
    if(i%in%everys){
      subSerie <- myHead(origSerie, -nroll+i-1)
      mod <- modFit(subSerie)
    } 

  ## pred
    lastPos <- T-nroll-n.ahead+i ## determine position of last row of out data:: full sample, remove nroll, n ahead and correct by one
    lags <- c(0:max(0,lag-1+add)) ## determine "width of out data: lags (add is 1 if VECM/diff)
    dat <- fullSerie[sort(lastPos-lags),,drop=FALSE] 
    R[i,] <- predict(mod, n.ahead=n.ahead, newdata=dat)[n.ahead,]
  }


## Return
  res <- list(pred=as.data.frame(R), true=myTail(origSerie, nroll))
  class(res) <- "pred_roll"
  attr(res, "model") <- class(object)[1]
  return(res)

}


#' @rdname predict_rolling
#' @export
predict_rolling.nlVar<- function(object, nroll=10, n.ahead=1, refit.every, newdata, ...){

  morgAr <- list(object=object, nroll=nroll)
  if(!missing(refit.every)) morgAr$refit.every <- refit.every
  if(!missing(newdata)) morgAr$newdata <- newdata

  if(length(n.ahead)==1){
    if(missing(newdata)){
      res_predroll <- predict_rolling_1step.nlVar(object, n.ahead=n.ahead, nroll=nroll, refit.every=refit.every,...)
    } else {
      res_predroll <- predict_rolling_1step.nlVar(object, n.ahead=n.ahead, nroll=nroll, newdata=newdata, refit.every=refit.every,...)
    }
    res <- res_predroll$pred
    newdata <- res_predroll$true
  } else {
    res_map <- mapply(predict_rolling_1step.nlVar, n.ahead=n.ahead, MoreArgs=morgAr,SIMPLIFY = FALSE)
    res_li <- lapply(res_map, function(x) x$pred)
    if(missing(newdata)) newdata <- res_map[[1]]$true ## VECM case
    res <- as.data.frame(simplify2df(res_li))

    res$n.ahead <- rep(n.ahead, each=nrow(res)/length(n.ahead))
  }

## return result
  res <- list(pred=res, true=data.frame(newdata))
  class(res) <- "pred_roll"
  attr(res, "model") <- class(object)[1]
  return(res)
}

#' @export
predict_rolling.nlar <- function(object, n.ahead=1, newdata, ...){

  if(missing(newdata)) stop("Providing newdata required for objects nlar")
  if(length(newdata) > length(object$str$x)) {
    stop("newdta should not have length bigger than sample used to estimate 'object'. Be careful not to provide first sub-sample in newdata!")
  }
#   n.aheads <- length(n.ahead)
 
## Construct data
  estim_samp <- object$str$x
  n_estim_samp <- length(estim_samp)
  nroll <- length(newdata)
  full_samp <- c(estim_samp, newdata)

  pred <- vector("numeric",length=nroll*length(n.ahead))
  for(j in 1:length(n.ahead)){
    n.ahead_i <- n.ahead[j]
    for(i in 1:nroll){
      pred[i+(j-1)*nroll] <- predict(object, n.ahead=n.ahead_i, newdat=full_samp[1:(n_estim_samp+i-n.ahead_i)])[n.ahead_i]
    }
  }
  if(length(n.ahead)>1){
    pred <- data.frame(pred=pred,n.ahead =rep(n.ahead, each=nroll))
  } else {
    pred <- as.data.frame(pred)
  }


## Format true data and pred
  trueDat <- as.data.frame(newdata)
  colnames(pred)[1] <- colnames(trueDat)[1] <- object$str$series

## Return object
  res <- list(pred=pred, true=trueDat)
  class(res) <- "pred_roll"
  attr(res, "model") <- class(object)[1]
  return(res)

}







simplify2df <- function(x) {

  out <- x[[1]]
  for(i in 2:length(x)){
    out <- rbind(out, x[[i]])
  }
  out
}

predict_rolling_fcstpkg <- function(object, n.ahead=1, newdata, model, check=FALSE, ...){

  mod_cl <- deparse(substitute(model))
  if(missing(newdata)) stop("Providing newdata required for objects ",  mod_cl, "!")
  if(length(newdata) > length(object$x)) stop("newdta should not have length bigger than sample used to estimate 'object'. Be careful not to provide first sub-sample in newdata!")
 

  estim_samp <- object$x
  n_estim_samp <- length(estim_samp)
  nroll <- length(newdata)
  full_samp <- c(estim_samp, newdata)

## Get in sample forecasts
  pred <- vector("numeric",length=nroll*length(n.ahead))

  for(j in 1:length(n.ahead)){
    for(i in 1:nroll){
      mod <- model(full_samp[1:(n_estim_samp+i-n.ahead[j])], model=object,...)
      pred[i+(j-1)*nroll] <- forecast(mod, h=n.ahead[j], level=0.1)$mean[n.ahead[j]] #set only 1 level to reduce time
    }
  }

## format pred: add eventually n.ahead column
  if(length(n.ahead)>1){
    pred <- data.frame(pred=pred,n.ahead =rep(n.ahead, each=nroll))
  } else {
    pred <- as.data.frame(pred)
  }

  trueVal <- as.data.frame(newdata)
  nam <- if(grepl("Arima", mod_cl)) object$series else deparse(object$call$y)
  colnames(pred)[1] <- colnames(trueVal)[1] <- nam

## Return object
  res <- list(pred=pred, true= trueVal)
  class(res) <- "pred_roll"
  return(res)
}

#' @export
predict_rolling.Arima <- function(object, n.ahead=1, newdata,  ...){
  res <- predict_rolling_fcstpkg(object=object,  n.ahead=n.ahead, newdata=newdata, model=Arima,check=TRUE,  ...)
  attr(res, "model") <- "Arima"
  return(res)
}

#' @export
predict_rolling.ets <- function(object,  n.ahead=1, newdata,  ...){
  res <- predict_rolling_fcstpkg(object=object, n.ahead=n.ahead, newdata=newdata, model=ets, check=FALSE, ...)
  attr(res, "model") <- "ets"
  return(res)
}


##############################################################
##################### TESTS
##############################################################
if(FALSE){
library(tsDyn)
#data(barry)
n_ca<- nrow(barry)

#  environment(predict_rolling_1step.nlVar) <- environment(star)
# environment(predict_rolling.nlVar) <- environment(star)
# environment(predict_rolling.default) <- environment(star)
# environment(predict_rolling) <- environment(star)

#### No refit lag=1
as.M <- function(x) as.matrix(x)
mod_var_l1_full <- lineVar(barry, lag=1)
mod_var_l1_sub <- lineVar(tsDyn:::myHead(barry,n_ca-10), lag=1)
mod_var_l1_sub_ref5 <- lineVar(tsDyn:::myHead(barry,n_ca-5), lag=1)


int_check <- function(object=mod_var_l1_full){
  pred_roll_1<-tsDyn:::predict_rolling_1step.nlVar(object=object, nroll=10, n.ahead=1)
  pred_roll_2 <-predict_rolling(object=object, nroll=10, n.ahead=2)
  pred_roll_12<-predict_rolling(object=object, nroll=10, n.ahead=1:2)
  all.equal(rbind(pred_roll_1$pred, pred_roll_2$pred), pred_roll_12$pred[,-4], check.attributes=FALSE) ## internal consistency
}

int_check_refit <- function(object=mod_var_l1_full, refit=5){
  pred_roll_1<-tsDyn:::predict_rolling_1step.nlVar(object=object, nroll=10, n.ahead=1, refit=refit)
  pred_roll_2 <-predict_rolling(object=object, nroll=10, n.ahead=2, refit=refit)
  pred_roll_12<-predict_rolling(object=object, nroll=10, n.ahead=1:2, refit=refit)
  all.equal(rbind(pred_roll_1$pred, pred_roll_2$pred), pred_roll_12$pred[,-4], check.attributes=FALSE) ## internal consistency
}
int_check(object=mod_var_l1_full)

pred_l1_roll_12<-predict_rolling(object=mod_var_l1_full, nroll=10, n.ahead=1:2)
pred_l1_0_12_nd <- predict(mod_var_l1_sub, n.ahead=2, newdata=barry[n_ca-11,,drop=FALSE])
pred_l1_1_12_nd_ref5 <- predict(mod_var_l1_sub_ref5, n.ahead=2, newdata=barry[n_ca-5,,drop=FALSE])
pred_l1_0_12_nd_ref5 <- predict(mod_var_l1_sub_ref5, n.ahead=2, newdata=barry[n_ca-6,,drop=FALSE])
pred_l1_1_12_nd <- predict(mod_var_l1_sub, n.ahead=2, newdata=barry[n_ca-10,,drop=FALSE])
pred_l1_2_12_nd <- predict(mod_var_l1_sub, n.ahead=2, newdata=barry[n_ca-9,,drop=FALSE])
pred_l1_1_12 <- predict(mod_var_l1_sub, n.ahead=2)
pred_l1_1_12_roll_newd <- predict_rolling(mod_var_l1_sub, nroll=10, newdata=barry[n_ca-c(10:1),])$pred
pred_l1_1_12_roll_newd_b <- predict_rolling(mod_var_l1_sub, nroll=10, newdata=barry[n_ca-c(11:2),], n.ahead=2)$pred
all.equal(pred_l1_1_12[1,,drop=FALSE], as.M(pred_l1_1_12_roll_newd[1, , drop=FALSE]), check.attributes=FALSE)
all.equal(pred_l1_1_12[2,,drop=FALSE], as.M(pred_l1_1_12_roll_newd_b[2, , drop=FALSE]), check.attributes=FALSE)
all.equal(pred_l1_1_12_nd, pred_l1_1_12) ## minor: consistency in predict with/withotut newdata=dataset


pred_l1_nd <- rbind(pred_l1_0_12_nd, pred_l1_1_12_nd, pred_l1_2_12_nd)
all.equal(pred_l1_nd[c(3,5),], as.M(pred_l1_roll_12$pred[1:2,1:3]), check.attributes=FALSE) ## check 1-ahead
all.equal(pred_l1_nd[c(2,4),], as.M(pred_l1_roll_12$pred[11:12,1:3]), check.attributes=FALSE) ## check 2 ahead


# predict_rolling(a, nroll=3)$pred[1,]
# predict(a_sub, n.ahead=1)
# predict(a_sub, n.ahead=1, newdata=Canada[n_ca-c(4,3),])



#### No refit lag=3
mod_var_l3_full <- lineVar(barry, lag=3)
mod_var_l3_sub <- lineVar(tsDyn:::myHead(barry,n_ca-10), lag=3)
int_check(object=mod_var_l3_full)

pred_l3_0_12_nd <- predict(mod_var_l3_sub, n.ahead=2, newdata=barry[n_ca-c(13:11),,drop=FALSE])
pred_l3_1_12_nd <- predict(mod_var_l3_sub, n.ahead=2, newdata=barry[n_ca-(12:10),,drop=FALSE])
pred_l3_2_12_nd <- predict(mod_var_l3_sub, n.ahead=2, newdata=barry[n_ca-c(11:9),,drop=FALSE])
pred_l3_1_12 <- predict(mod_var_l3_sub, n.ahead=2)
all.equal(pred_l3_1_12_nd, pred_l3_1_12) ## minor: consistency in predict with/withotut newdata=dataset

  
pred_l3_roll_12<-predict_rolling(object=mod_var_l3_full, nroll=10, n.ahead=1:2)
pred_l3_nd <- rbind(pred_l3_0_12_nd, pred_l3_1_12_nd, pred_l3_2_12_nd)
all.equal(pred_l3_nd[c(3,5),], as.M(pred_l3_roll_12$pred[1:2,1:3]), check.attributes=FALSE) ## check 1-ahead
all.equal(pred_l3_nd[c(2,4),], as.M(pred_l3_roll_12$pred[11:12,1:3]), check.attributes=FALSE) ## check 2 ahead


### Refit lag=1
int_check_refit(object=mod_var_l1_full)

pred_l1_ref_roll_12<-predict_rolling(object=mod_var_l1_full, nroll=10, n.ahead=1:2, refit=5)

mod_var_l1_sub_ref5 <- lineVar(tsDyn:::myHead(barry,n_ca-6), lag=1)
pred_l1_1_12_nd_ref5 <- predict(mod_var_l1_sub_ref5, n.ahead=2, newdata=barry[n_ca-5,,drop=FALSE])
pred_l1_0_12_nd_ref5 <- predict(mod_var_l1_sub_ref5, n.ahead=2, newdata=barry[n_ca-6,,drop=FALSE])

pred_l1_nd_ref5 <- rbind(pred_l1_0_12_nd_ref5, pred_l1_1_12_nd_ref5)
all.equal(pred_l1_nd[c(3,5),], as.M(pred_l1_ref_roll_12$pred[1:2,1:3]), check.attributes=FALSE) ## check 1-ahead
all.equal(pred_l1_nd[c(2,4),], as.M(pred_l1_ref_roll_12$pred[11:12,1:3]), check.attributes=FALSE) ## check 2 ahead
all.equal(pred_l1_nd_ref5[c(2,4),], as.M(pred_l1_ref_roll_12$pred[16:17,1:3]), check.attributes=FALSE) ## check refited2 ahead


### Refit lag=3
int_check_refit(object=mod_var_l3_full)
mod_var_l3_sub_ref5 <- lineVar(tsDyn:::myHead(barry,n_ca-6), lag=3)

pred_l3_ref_roll_12<-predict_rolling(object=mod_var_l3_full, nroll=10, n.ahead=1:2, refit=5)

all.equal(pred_l3_nd[c(3,5),], as.M(pred_l3_ref_roll_12$pred[1:2,1:3]), check.attributes=FALSE) ## check 1-ahead
all.equal(pred_l3_nd[c(2,4),], as.M(pred_l3_ref_roll_12$pred[11:12,1:3]), check.attributes=FALSE) ## check 2 ahead


pred_l3_0_12_nd_ref5 <- predict(mod_var_l3_sub_ref5, n.ahead=2, newdata=barry[n_ca-c(8:6),,drop=FALSE])
pred_l3_1_12_nd_ref5 <- predict(mod_var_l3_sub_ref5, n.ahead=2, newdata=barry[n_ca-c(7:5),,drop=FALSE])
pred_l3_nd_ref5 <- rbind(pred_l3_0_12_nd_ref5, pred_l3_1_12_nd_ref5)
all.equal(pred_l3_nd_ref5[c(2,4),], as.M(pred_l3_ref_roll_12$pred[16:17,1:3]), check.attributes=FALSE) ## check refited2 ahead


#### No refit: VAR diff,  lag=1
mod_var_l1_diff_full <- lineVar(barry, lag=1, I="diff")
mod_var_l1_diff_sub <- lineVar(tsDyn:::myHead(barry,n_ca-10), lag=1, I="diff")
mod_var_l1_diff_sub_ref5 <- lineVar(tsDyn:::myHead(barry,n_ca-5), lag=1, I="diff")


int_check(object=mod_var_l1_diff_full)

pred_l1_diff_roll_12<-predict_rolling(object=mod_var_l1_diff_full, nroll=10, n.ahead=1:2)
pred_l1_diff_0_12_nd <- predict(mod_var_l1_diff_sub, n.ahead=2, newdata=barry[n_ca-c(12:11),,drop=FALSE])
pred_l1_diff_1_12_nd_ref5 <- predict(mod_var_l1_diff_sub_ref5, n.ahead=2, newdata=barry[n_ca-c(6:5),,drop=FALSE])
pred_l1_diff_0_12_nd_ref5 <- predict(mod_var_l1_diff_sub_ref5, n.ahead=2, newdata=barry[n_ca-c(7:6),,drop=FALSE])
pred_l1_diff_1_12_nd <- predict(mod_var_l1_diff_sub, n.ahead=2, newdata=barry[n_ca-c(11:10),,drop=FALSE])
pred_l1_diff_2_12_nd <- predict(mod_var_l1_diff_sub, n.ahead=2, newdata=barry[n_ca-c(10:9),,drop=FALSE])
pred_l1_diff_1_12 <- predict(mod_var_l1_diff_sub, n.ahead=2)
all.equal(pred_l1_diff_1_12_nd, pred_l1_diff_1_12) ## minor: consistency in predict with/withotut newdata=dataset


pred_l1_diff_nd <- rbind(pred_l1_diff_0_12_nd, pred_l1_diff_1_12_nd, pred_l1_diff_2_12_nd)
all.equal(pred_l1_diff_nd[c(3,5),], as.M(pred_l1_diff_roll_12$pred[1:2,1:3]), check.attributes=FALSE) ## check 1-ahead
all.equal(pred_l1_diff_nd[c(2,4),], as.M(pred_l1_diff_roll_12$pred[11:12,1:3]), check.attributes=FALSE) ## check 2 ahead



#### VECM No refit lag=1
mod_vecm_l1_full <- VECM(barry, lag=1)
mod_vecm_l1_sub <- VECM(tsDyn:::myHead(barry,n_ca-10), lag=1)
mod_vecm_l1_sub_ref5 <- VECM(tsDyn:::myHead(barry,n_ca-5), lag=1)


int_check(object=mod_vecm_l1_full)

pred_l3_vecm_roll_12<-predict_rolling(object=mod_vecm_l1_full, nroll=10, n.ahead=1:2)
pred_l3_vecm_0_12_nd <- predict(mod_vecm_l1_sub, n.ahead=2, newdata=barry[n_ca-c(12:11),,drop=FALSE])
pred_l3_vecm_1_12_nd_ref5 <- predict(mod_vecm_l1_sub_ref5, n.ahead=2, newdata=barry[n_ca-c(6:5),,drop=FALSE])
pred_l3_vecm_0_12_nd_ref5 <- predict(mod_vecm_l1_sub_ref5, n.ahead=2, newdata=barry[n_ca-c(7:6),,drop=FALSE])
pred_l3_vecm_1_12_nd <- predict(mod_vecm_l1_sub, n.ahead=2, newdata=barry[n_ca-c(11:10),,drop=FALSE])
pred_l3_vecm_2_12_nd <- predict(mod_vecm_l1_sub, n.ahead=2, newdata=barry[n_ca-c(10:9),,drop=FALSE])
pred_l3_vecm_1_12 <- predict(mod_vecm_l1_sub, n.ahead=2)
all.equal(pred_l3_vecm_1_12_nd, pred_l3_vecm_1_12) ## minor: consistency in predict with/withotut newdata=dataset


pred_l3_vecm_nd <- rbind(pred_l3_vecm_0_12_nd, pred_l3_vecm_1_12_nd, pred_l3_vecm_2_12_nd)
all.equal(pred_l3_vecm_nd[c(3,5),], as.M(pred_l3_vecm_roll_12$pred[1:2,1:3]), check.attributes=FALSE) ## check 1-ahead
all.equal(pred_l3_vecm_nd[c(2,4),], as.M(pred_l3_vecm_roll_12$pred[11:12,1:3]), check.attributes=FALSE) ## check 2 ahead



#### VECM No refit lag=3
mod_var_l3_vecm_full <- VECM(barry, lag=3)
mod_var_l3_vecm_sub <- VECM(tsDyn:::myHead(barry,n_ca-10), lag=3)
mod_var_l3_vecm_sub_ref5 <- VECM(tsDyn:::myHead(barry,n_ca-6), lag=3)


int_check(object=mod_var_l3_vecm_full)

pred_l3_vecm_roll_12<-predict_rolling(object=mod_var_l3_vecm_full, nroll=10, n.ahead=1:2)
pred_l3_vecm_0_12_nd <- predict(mod_var_l3_vecm_sub, n.ahead=2, newdata=barry[n_ca-c(14:11),,drop=FALSE])
pred_l3_vecm_1_12_nd_ref5 <- predict(mod_var_l3_vecm_sub_ref5, n.ahead=2, newdata=barry[n_ca-c(6:9),,drop=FALSE])
pred_l3_vecm_0_12_nd_ref5 <- predict(mod_var_l3_vecm_sub_ref5, n.ahead=2, newdata=barry[n_ca-c(7:10),,drop=FALSE])
pred_l3_vecm_1_12_nd <- predict(mod_var_l3_vecm_sub, n.ahead=2, newdata=barry[n_ca-c(13:10),,drop=FALSE])
pred_l3_vecm_2_12_nd <- predict(mod_var_l3_vecm_sub, n.ahead=2, newdata=barry[n_ca-c(12:9),,drop=FALSE])
pred_l3_vecm_1_12 <- predict(mod_var_l3_vecm_sub, n.ahead=2)
all.equal(pred_l3_vecm_1_12_nd, pred_l3_vecm_1_12) ## minor: consistency in predict with/withotut newdata=dataset


pred_l3_vecm_nd <- rbind(pred_l3_vecm_0_12_nd, pred_l3_vecm_1_12_nd, pred_l3_vecm_2_12_nd)
all.equal(pred_l3_vecm_nd[c(3,5),], as.M(pred_l3_vecm_roll_12$pred[1:2,1:3]), check.attributes=FALSE) ## check 1-ahead
all.equal(pred_l3_vecm_nd[c(2,4),], as.M(pred_l3_vecm_roll_12$pred[11:12,1:3]), check.attributes=FALSE) ## check 2 ahead


### VECM Refit lag=3
int_check_refit(object=mod_var_l3_vecm_full)
pred_l3_vecm_roll_12_ref<-predict_rolling(object=mod_var_l3_vecm_full, nroll=10, n.ahead=1:2, refit=5)
pred_l3_vecm_roll_12_ref_b<-predict_rolling(object=mod_var_l3_vecm_full, nroll=10, n.ahead=2, refit=5)


pred_l3_vecm_0_12_nd_ref5 <- predict(mod_var_l3_vecm_sub_ref5, n.ahead=2, newdata=barry[n_ca-c(9:6),,drop=FALSE])
pred_l3_vecm_1_12_nd_ref5 <- predict(mod_var_l3_vecm_sub_ref5, n.ahead=2, newdata=barry[n_ca-c(8:5),,drop=FALSE])

pred_l3_vecm_nd_ref5 <- rbind(pred_l3_vecm_0_12_nd_ref5, pred_l3_vecm_1_12_nd_ref5)
all.equal(pred_l3_vecm_nd_ref5[c(2,4),], as.M(pred_l3_vecm_roll_12_ref$pred[16:17,1:3]), check.attributes=FALSE) ## check refited2 ahead


############################
########### NLAR
############################

#### linear
mod_ar <- linear(lynx[1:100], m=1)

pr_ar_1 <- predict_rolling(mod_ar, newdata=log(lynx[101:114]), n.ahead=1)$pred
pr_ar_2 <- predict_rolling(mod_ar, newdata=log(lynx[101:114]), n.ahead=2)$pred

pr_ar_12 <- predict_rolling(mod_ar, newdata=log(lynx[101:114]), n.ahead=1:2)$pred
all.equal(c(pr_ar_1[,1],pr_ar_2[,1]), pr_ar_12[,1])
all.equal(c(pr_ar_1[1,1],pr_ar_2[2,1]), predict(mod_ar, n.ahead=3)[1:2])



#### setar
mod_set <- setar(lynx[1:100], m=1)

pr_set_1 <- predict_rolling(mod_set, newdata=log(lynx[101:114]), n.ahead=1)$pred
pr_set_2 <- predict_rolling(mod_set, newdata=log(lynx[101:114]), n.ahead=2)$pred

pr_set_12 <- predict_rolling(mod_set, newdata=log(lynx[101:114]), n.ahead=1:2)$pred
all.equal(c(pr_set_1[,1],pr_set_2[,1]), pr_set_12[,1])
all.equal(c(pr_set_1[1,1],pr_set_2[2,1]), predict(mod_set, n.ahead=3)[1:2])


############################
########### FORECATS
############################
library(forecast)
mod_arauto <- auto.arima(log(lynx[1:100]))
mod_ets <- ets(log(lynx[1:100]))
mod_arim <- Arima(log(lynx[1:100]), order=c(1,0,0))




## ARIMA
pr_fct_1 <- predict_rolling(mod_arim, newdata=log(lynx[101:114]), n.ahead=1)$pred
pr_fct_2 <- predict_rolling(mod_arim, newdata=log(lynx[101:114]), n.ahead=2)$pred

pr_fct_12 <- predict_rolling(mod_arim, newdata=log(lynx[101:114]), n.ahead=1:2)$pred
all.equal(c(pr_fct_1[,1],pr_fct_2[,1]), pr_fct_12[,1])
all.equal(c(pr_fct_1[1,1],pr_fct_2[2,1]), forecast(mod_arim, h=3)$mean[1:2])

## auto.ARIMA
pr_fct_at_1 <- predict_rolling(mod_arauto, newdata=log(lynx[101:114]), n.ahead=1)$pred
pr_fct_at_2 <- predict_rolling(mod_arauto, newdata=log(lynx[101:114]), n.ahead=2)$pred

pr_fct_at_12 <- predict_rolling(mod_arauto, newdata=log(lynx[101:114]), n.ahead=1:2)$pred
all.equal(c(pr_fct_at_1[,1],pr_fct_at_2[,1]), pr_fct_at_12[,1])
all.equal(c(pr_fct_at_1[1,1],pr_fct_at_2[2,1]), forecast(mod_arauto, h=3)$mean[1:2])

## ETS
pr_fct_ets_1 <- predict_rolling(mod_ets, newdata=log(lynx[101:114]), n.ahead=1)$pred
pr_fct_ets_2 <- predict_rolling(mod_ets, newdata=log(lynx[101:114]), n.ahead=2)$pred

pr_fct_ets_12 <- predict_rolling(mod_ets, newdata=log(lynx[101:114]), n.ahead=1:2)$pred
all.equal(c(pr_fct_ets_1[,1],pr_fct_ets_2[,1]), pr_fct_ets_12[,1])
all.equal(c(pr_fct_ets_1[1,1],pr_fct_ets_2[2,1]), forecast(mod_ets, h=3)$mean[1:2])


}

Try the tsDyn package in your browser

Any scripts or data that you put into this service are public.

tsDyn documentation built on Oct. 31, 2024, 5:08 p.m.