tests/testthat/test_oracle.R

test_that("oracle error rates are correct", {
  n      <- 100
  ploidy <- 6
  seq    <- 0.01
  bias   <- 0.75
  od     <- 0
  dist   <- dbinom(x = 0:ploidy, size = ploidy, prob = 0.7)
  oracle_mis(n = n, ploidy = ploidy, seq = seq, bias = bias, od = od, dist = dist)


  rfun <- function(n, ploidy, seq, bias, od, dist) {
    xi <- xi_fun(p = (0:ploidy) / ploidy, eps = seq, h = bias)

    dbbmat <- matrix(NA, nrow = n + 1, ncol = ploidy + 1)
    for (index in 1:(ploidy + 1)) {
      dbbmat[, index] <- dist[index] * dbetabinom(x = 0:n, size = n, mu = xi[index], rho = od, log = FALSE)
    }

    1 - sum(apply(dbbmat, 1, max))

   }

  rway <- rfun(n = n, ploidy = ploidy, seq = seq, bias = bias, od = od, dist = dist)
  myway <- oracle_mis(n = n, ploidy = ploidy, seq = seq, bias = bias, od = od, dist = dist)

  expect_equal(rway, myway)

  # ## 7 times faster!
  # microbenchmark::microbenchmark(
  #   rfun(n = n, ploidy = ploidy, seq = seq, bias = bias, od = od, dist = dist),
  #   oracle_mis(n = n, ploidy = ploidy, seq = seq, bias = bias, od = od, dist = dist)
  # )

}
)


test_that("oracle_mis_vec sums to get oracle_mis", {
  n      <- 100
  ploidy <- 6
  seq    <- 0.01
  bias   <- 0.75
  od     <- 0
  dist   <- dbinom(x = 0:ploidy, size = ploidy, prob = 0.7)
  om <- oracle_mis(n      = n,
                   ploidy = ploidy,
                   seq    = seq,
                   bias   = bias,
                   od     = od,
                   dist   = dist)

  om_vec <- oracle_mis_vec(n      = n,
                           ploidy = ploidy,
                           seq    = seq,
                           bias   = bias,
                           od     = od,
                           dist   = dist)

  expect_equal(sum(om_vec * dist), om)
})

test_that("oracle_joint is consistent with oracle_mis and oracle_mis_vec", {
  n      <- 100
  ploidy <- 6
  seq    <- 0.01
  bias   <- 0.75
  od     <- 0
  dist   <- dbinom(x = 0:ploidy, size = ploidy, prob = 0.7)
  jd <- oracle_joint(n      = n,
                     ploidy = ploidy,
                     seq    = seq,
                     bias   = bias,
                     od     = od,
                     dist   = dist)

  expect_equal(sum(jd), 1)
  expect_equal(colSums(jd), dist)

  om <- oracle_mis(n      = n,
                   ploidy = ploidy,
                   seq    = seq,
                   bias   = bias,
                   od     = od,
                   dist   = dist)

  expect_equal(om, 1 - sum(diag(jd)))

  om_vec <- oracle_mis_vec(n      = n,
                           ploidy = ploidy,
                           seq    = seq,
                           bias   = bias,
                           od     = od,
                           dist   = dist)

  expect_equal(1 - diag(sweep(x = jd, MARGIN = 2, STATS = colSums(jd), FUN = "/")), om_vec)
})

# test_that("oracle_cor works", {
#   n      <- 30
#   ploidy <- 6
#   seq    <- 0.01
#   bias   <- 0.5
#   od     <- 0
#   dist   <- dbinom(x = 0:ploidy, size = ploidy, prob = 0.7)
#   oracle_cor(n      = n,
#              ploidy = ploidy,
#              seq    = seq,
#              bias   = bias,
#              od     = od,
#              dist   = dist)
# })


test_that("oracle_from_joint works", {
  ploidy <- 6
  dist <- stats::dbinom(0:ploidy, ploidy, 0.75)
  jd <- oracle_joint(n = 100, ploidy = ploidy, seq = 0.001,
                     bias = 0.7, od = 0.01, dist = dist)

  mv1 <- oracle_mis_vec_from_joint(jd = jd)
  m1 <- oracle_mis_from_joint(jd = jd)
  c1 <- oracle_cor_from_joint(jd = jd)

  mv2 <- oracle_mis_vec(n = 100, ploidy = ploidy, seq = 0.001,
                        bias = 0.7, od = 0.01, dist = dist)
  m2 <- oracle_mis(n = 100, ploidy = ploidy, seq = 0.001,
                   bias = 0.7, od = 0.01, dist = dist)
  c2 <- oracle_cor(n = 100, ploidy = ploidy, seq = 0.001,
                   bias = 0.7, od = 0.01, dist = dist)
  expect_equal(mv1, mv2)
  expect_equal(m1, m2)
  expect_equal(c1, c2)

})


test_that("no NaN in oracle_joint", {
  ploidy <- 4
  seq    <- 0.001
  bias   <- 0.9
  od     <- 0.007
  p1geno <- 3
  p2geno <- 2
  dist   <- get_q_array(ploidy = ploidy)[p1geno + 1, p2geno + 1, ]
  depth  <- 10
  jd <- oracle_joint(n = depth,
                     ploidy = ploidy,
                     seq = seq,
                     bias = bias,
                     od = od,
                     dist = dist)
  expect_true(all(!is.nan(jd)))

  oracle_plot(jd = jd)
})

Try the updog package in your browser

Any scripts or data that you put into this service are public.

updog documentation built on Nov. 5, 2025, 7:26 p.m.