Nothing
`CCorA` <-
function(Y, X, stand.Y = FALSE, stand.X = FALSE, permutations = 0, ...)
{
epsilon <- sqrt(.Machine$double.eps)
##
## BEGIN: Internal functions
##
cov.inv <- function(mat, no, epsilon) {
## This function returns:
## 1) mat = matrix F of the principal components (PCA object scores);
## 2) S.inv = the inverse of the covariance matrix;
## 3) m = the rank of matrix 'mat'
## The inverse of the PCA covariance matrix is the diagonal
## matrix of (1/eigenvalues). If ncol(mat) = 1, the
## inverse of the covariance matrix contains 1/var(mat).
mat <- as.matrix(mat) # 'mat' was centred before input to cov.inv
if(ncol(mat) == 1) {
S.inv <- as.matrix(1/var(mat))
m <- 1
} else {
S.svd <- svd(cov(mat))
m <- ncol(mat)
mm <- length(which(S.svd$d > max(epsilon, epsilon * S.svd$d[1L])))
if(mm < m) {
message(gettextf("matrix %d: rank=%d < order %d",
no, mm, m))
m <- mm
}
S.inv <- diag(1/S.svd$d[1:m])
mat <- mat %*% S.svd$u[,1:m] # S.svd$u = normalized eigenvectors
}
list(mat=mat, S.inv=S.inv, m=m)
}
## Check zero variances
var.null <- function (mat, no) {
problems <- diag(cov(mat)) <= 0
if (any(problems)) {
whichProbs <- paste(which(problems), collapse=", ")
warning("zero variance in variable(s) ", whichProbs)
stop("verify/modify your matrix No. ", no)
}
invisible(0)
}
probPillai <- function(Y.per, X, n, S11.inv, S22.inv, s, df1, df2, epsilon,
Fref, permat, ...) {
## Permutation test for Pillai's trace in CCorA.
## Reference: Brian McArdle's unpublished graduate course notes.
S12.per <- cov(Y.per,X)
gross.mat <- S12.per %*% S22.inv %*% t(S12.per) %*% S11.inv
Pillai.per <- sum(diag(gross.mat))
Fper <- (Pillai.per*df2)/((s-Pillai.per)*df1)
Fper >= (Fref-epsilon)
}
## END: internal functions
##
Y <- as.matrix(Y)
var.null(Y,1)
nY <- nrow(Y)
p <- ncol(Y)
if(is.null(colnames(Y))) {
Ynoms <- paste("VarY", 1:p, sep="")
} else {
Ynoms <- colnames(Y)
}
X <- as.matrix(X)
var.null(X,2)
nX <- nrow(X)
q <- ncol(X)
if(is.null(colnames(X))) {
Xnoms <- paste("VarX", 1:q, sep="")
} else {
Xnoms <- colnames(X)
}
if(nY != nX) stop("different numbers of rows in Y and X")
n <- nY
if(is.null(rownames(X)) & is.null(rownames(Y))) {
rownoms <- paste("Obj", 1:n, sep="")
} else {
if(is.null(rownames(X))) {
rownoms <- rownames(Y)
} else {
rownoms <- rownames(X)
}
}
Y.c <- scale(Y, center = TRUE, scale = stand.Y)
X.c <- scale(X, center = TRUE, scale = stand.X)
## Check for identical matrices
if(p == q) {
if(sum(abs(Y-X)) < epsilon^2) stop("Y and X are identical")
if(sum(abs(Y.c-X.c)) < epsilon^2) stop("after centering, Y and X are identical")
}
## Replace Y.c and X.c by tables of their PCA object scores, computed by SVD
temp <- cov.inv(Y.c, 1, epsilon)
Y <- temp$mat
pp <- temp$m
rownames(Y) <- rownoms
temp <- cov.inv(X.c, 2, epsilon)
X <- temp$mat
qq <- temp$m
rownames(X) <- rownoms
## Correction PL, 26dec10
if(max(pp,qq) >= (n-1))
stop("not enough degrees of freedom: max(pp,qq) >= (n-1)")
## Covariance matrices, etc. from the PCA scores
S11 <- cov(Y)
if(sum(abs(S11)) < epsilon) return(0)
S22 <- cov(X)
if(sum(abs(S22)) < epsilon) return(0)
S12 <- cov(Y,X)
if(sum(abs(S12)) < epsilon) return(0)
S11.chol <- chol(S11)
S11.chol.inv <- solve(S11.chol)
S22.chol <- chol(S22)
S22.chol.inv <- solve(S22.chol)
## K summarizes the correlation structure between the two sets of variables
K <- t(S11.chol.inv) %*% S12 %*% S22.chol.inv
K.svd <- svd(K)
Eigenvalues <- K.svd$d^2
##
## Check for circular covariance matrix
if((p == q) & (var(K.svd$d) < epsilon))
warning("[nearly] circular covariance matrix - the solution may be meaningless")
## K.svd$u %*% diag(K.svd$d) %*% t(K.svd$v) # To check that K = U D V'
axenames <- paste("CanAxis",seq_along(K.svd$d),sep="")
U <- K.svd$u
V <- K.svd$v
A <- S11.chol.inv %*% U
B <- S22.chol.inv %*% V
Cy <- (Y %*% A) # Correction 27dec10: remove /sqrt(n-1)
Cx <- (X %*% B) # Correction 27dec10: remove /sqrt(n-1)
## Compute the 'Biplot scores of Y and X variables' a posteriori --
corr.Y.Cy <- cor(Y.c, Cy) # To plot Y in biplot in space Y
corr.Y.Cx <- cor(Y.c, Cx) # Available for plotting Y in space of X
corr.X.Cy <- cor(X.c, Cy) # Available for plotting X in space of Y
corr.X.Cx <- cor(X.c, Cx) # To plot X in biplot in space X
## Add row and column names
rownames(Cy) <- rownames(Cx) <- rownoms
colnames(Cy) <- colnames(Cx) <- axenames
rownames(corr.Y.Cy) <- rownames(corr.Y.Cx) <- Ynoms
rownames(corr.X.Cy) <- rownames(corr.X.Cx) <- Xnoms
colnames(corr.Y.Cy) <- colnames(corr.Y.Cx) <- axenames
colnames(corr.X.Cy) <- colnames(corr.X.Cx) <- axenames
## Compute the two redundancy statistics
RsquareY.X <- simpleRDA2(Y, X)
RsquareX.Y <- simpleRDA2(X, Y)
Rsquare.adj.Y.X <- RsquareAdj(RsquareY.X$Rsquare, n, RsquareY.X$m)
Rsquare.adj.X.Y <- RsquareAdj(RsquareX.Y$Rsquare, n, RsquareX.Y$m)
## Compute Pillai's trace = sum of the canonical eigenvalues
## = sum of the squared canonical correlations
S11.inv <- S11.chol.inv %*% t(S11.chol.inv)
S22.inv <- S22.chol.inv %*% t(S22.chol.inv)
gross.mat <- S12 %*% S22.inv %*% t(S12) %*% S11.inv
PillaiTrace <- sum(diag(gross.mat))
s <- min(pp, qq)
df1 <- max(pp,qq)
df2 <- (n - max(pp,qq) - 1)
Fval <- (PillaiTrace*df2)/((s-PillaiTrace)*df1)
p.Pillai <- pf(Fval, s*df1, s*df2, lower.tail=FALSE)
permat <- getPermuteMatrix(permutations, n, ...)
nperm <- nrow(permat)
if (ncol(permat) != n)
stop(gettextf("'permutations' have %d columns, but data have %d rows",
ncol(permat), n))
if (nperm > 0) {
p.perm <- sapply(seq_len(nperm), function(indx, ...)
probPillai(Y[permat[indx,],] , X, n, S11.inv, S22.inv, s,
df1, df2, epsilon, Fval, nperm, ...))
p.perm <- (sum(p.perm) +1)/(nperm + 1)
} else {
p.perm <- NA
}
out <- list(Pillai=PillaiTrace, Eigenvalues=Eigenvalues, CanCorr=K.svd$d,
Mat.ranks=c(RsquareX.Y$m, RsquareY.X$m),
RDA.Rsquares=c(RsquareY.X$Rsquare, RsquareX.Y$Rsquare),
RDA.adj.Rsq=c(Rsquare.adj.Y.X, Rsquare.adj.X.Y),
nperm=nperm, p.Pillai=p.Pillai, p.perm=p.perm, Cy=Cy, Cx=Cx,
corr.Y.Cy=corr.Y.Cy, corr.X.Cx=corr.X.Cx, corr.Y.Cx=corr.Y.Cx,
corr.X.Cy=corr.X.Cy, control = attr(permat, "control"),
call = match.call())
class(out) <- "CCorA"
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.