Nothing
`capscale` <-
function (formula, data, distance = "euclidean", sqrt.dist = FALSE,
comm = NULL, add = FALSE, dfun = vegdist,
metaMDSdist = FALSE, na.action = na.fail, subset = NULL, ...)
{
if (!inherits(formula, "formula"))
stop("needs a model formula")
if (missing(data)) {
data <- parent.frame()
}
else {
data <- eval(match.call()$data, environment(formula),
enclos = .GlobalEnv)
}
formula <- formula(terms(formula, data = data))
## The following line was eval'ed in environment(formula), but
## that made update() fail. Rethink the line if capscale() fails
## mysteriously at this point.
X <- eval(formula[[2]], envir=environment(formula),
enclos = globalenv())
## see if user supplied dissimilarities as a matrix
if ((is.matrix(X) || is.data.frame(X)) &&
isSymmetric(unname(as.matrix(X))))
X <- as.dist(X)
if (!inherits(X, "dist")) {
comm <- X
vdata <- as.character(formula[[2]])
dfun <- match.fun(dfun)
if (metaMDSdist) {
commname <- as.character(formula[[2]])
X <- metaMDSdist(comm, distance = distance, zerodist = "ignore",
commname = commname, distfun = dfun, ...)
commname <- attr(X, "commname")
comm <- eval.parent(parse(text=commname))
} else {
X <- dfun(X, distance, ...)
}
} else { # vdata name
if (missing(comm))
vdata <- NULL
else
vdata <- deparse(substitute(comm))
}
inertia <- attr(X, "method")
if (is.null(inertia))
inertia <- "unknown"
inertia <- paste(toupper(substr(inertia, 1, 1)),
substring(inertia, 2), sep = "")
inertia <- paste(inertia, "distance")
if (!sqrt.dist)
inertia <- paste("squared", inertia)
## postpone info on euclidification till we have done so
## evaluate formula: ordiParseFormula will return dissimilarities
## as a symmetric square matrix (except that some rows may be
## deleted due to missing values)
d <- ordiParseFormula(formula,
data,
na.action = na.action,
subset = substitute(subset),
X = X)
## ordiParseFormula subsets rows of dissimilarities: do the same
## for columns ('comm' is handled later). ordiParseFormula
## returned the original data, but we use instead the potentially
## changed X and discard d$X.
if (!is.null(d$subset)) {
X <- as.matrix(X)[d$subset, d$subset, drop = FALSE]
}
## Delete columns if rows were deleted due to missing values
if (!is.null(d$na.action)) {
X <- as.matrix(X)[-d$na.action, -d$na.action, drop = FALSE]
}
X <- as.dist(X)
k <- attr(X, "Size") - 1
if (sqrt.dist)
X <- sqrt(X)
if (max(X) >= 4 + .Machine$double.eps) {
inertia <- paste("mean", inertia)
adjust <- sqrt(k)
X <- X/adjust
}
else {
adjust <- 1
}
nm <- attr(X, "Labels")
## wcmdscale, optionally with additive adjustment
X <- wcmdscale(X, x.ret = TRUE, add = add)
if(any(dim(X$points) == 0)) # there may be no positive dims
X$points <- matrix(0, NROW(X$points), 1)
## this may have been euclidified: update inertia
if (!is.na(X$ac) && X$ac > sqrt(.Machine$double.eps))
inertia <- paste(paste0(toupper(substring(X$add, 1, 1)),
substring(X$add, 2)),
"adjusted", inertia)
if (is.null(rownames(X$points)))
rownames(X$points) <- nm
sol <- ordConstrained(X$points, d$Y, d$Z, method = "capscale")
## update for negative eigenvalues
if (any(X$eig < 0)) {
negax <- X$eig[X$eig < 0]
sol$CA$imaginary.chi <- sum(negax)
sol$tot.chi <- sol$tot.chi + sol$CA$imaginary.chi
sol$CA$imaginary.rank <- length(negax)
sol$CA$imaginary.u.eig <- X$negaxes
}
if (!is.null(comm)) {
sol$vdata <- vdata
comm <- scale(comm, center = TRUE, scale = FALSE)
sol$colsum <- apply(comm, 2, sd)
## take a 'subset' of the community after scale()
if (!is.null(d$subset))
comm <- comm[d$subset, , drop = FALSE]
## NA action after 'subset'
if (!is.null(d$na.action))
comm <- comm[-d$na.action, , drop = FALSE]
if (!is.null(sol$pCCA) && sol$pCCA$rank > 0)
comm <- qr.resid(sol$pCCA$QR, comm)
if (!is.null(sol$CCA) && sol$CCA$rank > 0) {
v.eig <- t(comm) %*% sol$CCA$u/sqrt(k)
sol$CCA$v <- decostand(v.eig, "normalize", MARGIN = 2)
comm <- qr.resid(sol$CCA$QR, comm)
}
if (!is.null(sol$CA) && sol$CA$rank > 0) {
v.eig <- t(comm) %*% sol$CA$u/sqrt(k)
sol$CA$v <- decostand(v.eig, "normalize", MARGIN = 2)
}
} else {
## input data were dissimilarities, and no 'comm' defined:
## species scores make no sense and are made NA
sol$CA$v[] <- NA
if (!is.null(sol$CCA))
sol$CCA$v[] <- NA
sol$colsum <- NA
}
## centroids
sol$CCA$centroids <- getCentroids(sol, d$modelframe)
sol$call <- match.call()
sol$terms <- terms(formula, "Condition", data = data)
sol$terminfo <- ordiTerminfo(d, data)
sol$call$formula <- formula(d$terms, width.cutoff = 500)
sol$call$formula[[2]] <- formula[[2]]
sol$sqrt.dist <- sqrt.dist
if (!is.na(X$ac) && X$ac > 0) {
sol$ac <- X$ac
sol$add <- X$add
}
sol$adjust <- adjust
sol$inertia <- inertia
if (metaMDSdist)
sol$metaMDSdist <- commname
sol$subset <- d$subset
sol$na.action <- d$na.action
class(sol) <- c("capscale", "rda", "cca")
if (!is.null(sol$na.action))
sol <- ordiNAexclude(sol, d$excluded)
sol
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.