Nothing
`kendall.global` <-
function(Y, group, nperm=999, mult="holm")
{
### Function to test the overall significance of the Kendall coefficient of
### concordance for a single group or several groups of judges (e.g. species)
###
### copyleft - Guillaume Blanchet and Pierre Legendre, October 2008
################################################################################
mult <- match.arg(mult, c("sidak", p.adjust.methods))
##CC# Make sure Y is a matrix and find number of rows and columns of Y
Y <- as.matrix(Y)
n <- nrow(Y)
p <- ncol(Y)
if(p < 2) stop("there is only one variable in the data matrix")
##CC# Transform the species abundances to ranks, by column
R <- apply(Y,2,rank)
if(missing(group)) group <- rep(1,p)
if(length(group) != p){
stop("the number of species in the vector differs from the total number of species")
}
group <- as.factor(group)
gr.lev <- levels(group)
ngr <- nlevels(group)
gr <- as.list(1:ngr)
n.per.gr <- vector(length=ngr)
for(i in 1:ngr){
gr[[i]] <- which(group==gr.lev[i])
n.per.gr[i] <- length(gr[[i]])
## Vector containing the number of species per group
}
## Initialise the vectors of results
W.gr <- vector("numeric",ngr)
F.gr <- vector("numeric",ngr)
prob.F.gr <- vector("numeric",ngr)
Chi2.gr <- vector("numeric",ngr)
prob.perm.gr <- vector("numeric",ngr)
for(i in 1:ngr){
p.i <- n.per.gr[i]
if(p.i < 2) stop(gettextf("there is only one variable in group %d",gr.lev[i]))
##CC# Correction factors for tied ranks (eq. 3.3)
t.ranks <- apply(R[,gr[[i]]], 2,
function(x) summary(as.factor(x), maxsum=n))
T. <- sum(unlist(lapply(t.ranks, function(x) sum((x^3)-x))))
##CC# Compute the Sum of squares of the uncentred ranks (S) (eq. 3.1)
S <- sum(rowSums(R[,gr[[i]]])^2)
##CC# Compute Kendall's W (eq. 3.2)
W.gr[i] <- ((12*S)-(3*(p.i^2)*n*(n+1)^2))/(((p.i^2)*((n^3)-n))-(p.i*T.))
##C# Compute Fisher F statistic and associated probability
F.gr[i] <- (p.i-1)*W.gr[i]/(1-W.gr[i])
nu1 <- n-1-(2/p.i)
nu2 <- nu1*(p.i-1)
prob.F.gr[i] <- pf(F.gr[i], nu1, nu2, lower.tail=FALSE)
##CC# Calculate Friedman's Chi-square (eq. 3.4)
Chi2.gr[i] <- p.i*(n-1)*W.gr[i]
counter <- 1
for(j in 1:nperm) { # Each species is permuted independently
R.perm <- apply(R[,gr[[i]]], 2, sample)
S.perm <- sum(rowSums(R.perm)^2)
W.perm <- ((12*S.perm)-(3*(p.i^2)*n*(n+1)^2))/(((p.i^2)*((n^3)-n))-(p.i*T.))
Chi2.perm <- p.i*(n-1)*W.perm
if(Chi2.perm >= Chi2.gr[i]) counter <- counter+1
}
prob.perm.gr[i] <- counter/(nperm+1)
}
## Correction to P-values for multiple testing
if(ngr > 1) {
if(mult == "sidak") {
perm.corr <- NA
for(i in 1:ngr) perm.corr = c(perm.corr, (1-(1-prob.perm.gr[i])^ngr))
perm.corr <- perm.corr[-1]
#
prob.F.corr <- NA
for(i in 1:ngr) prob.F.corr = c(prob.F.corr, (1-(1-prob.F.gr[i])^ngr))
prob.F.corr <- prob.F.corr[-1]
} else {
perm.corr <- p.adjust(prob.perm.gr, method=mult)
prob.F.corr <- p.adjust(prob.F.gr, method=mult)
}
}
## Create a data frame containing the results
if(ngr == 1) {
table <- rbind(W.gr, F.gr, prob.F.gr, Chi2.gr, prob.perm.gr)
colnames(table) <- colnames(table,do.NULL = FALSE, prefix = "Group.")
rownames(table) <- c("W", "F", "Prob.F", "Chi2", "Prob.perm")
} else {
table <- rbind(W.gr, F.gr, prob.F.gr, prob.F.corr, Chi2.gr, prob.perm.gr, perm.corr)
colnames(table) <- colnames(table,do.NULL = FALSE, prefix = "Group.")
rownames(table) <- c("W", "F", "Prob.F", "Corrected prob.F", "Chi2", "Prob.perm", "Corrected prob.perm")
}
if(ngr == 1) {
out <- list(Concordance_analysis=table)
} else {
out <- list(Concordance_analysis=table, Correction.type=mult)
}
#
class(out) <- "kendall.global"
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.