R/helper_functions.R

Defines functions write_csv_robust reverseLabel predictMaxnet mxNonzeroCoefs getRasterVals ecospat.plot.nicheDEV remEnvsValsNA popUpContent zoom2Occs polyZoom clearAll writeLog spName smartProgress hlSpp fmtSpN spurious printVecAsis

Documented in clearAll ecospat.plot.nicheDEV fmtSpN getRasterVals hlSpp mxNonzeroCoefs polyZoom popUpContent predictMaxnet printVecAsis remEnvsValsNA reverseLabel smartProgress spName spurious write_csv_robust writeLog zoom2Occs

# Wallace EcoMod: a flexible platform for reproducible modeling of
# species niches and distributions.
#
# helper_functions.R
# File author: Wallace EcoMod Dev Team. 2023.
# --------------------------------------------------------------------------
# This file is part of the Wallace EcoMod application
# (hereafter “Wallace”).
#
# Wallace is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# Wallace is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Wallace. If not, see <http://www.gnu.org/licenses/>.
# --------------------------------------------------------------------------
#
####################### #
# MISC #
####################### #
#' @title printVecAsis
#' @description For internal use. Print vector as character string
#' @param x vector
#' @param asChar exclude c notation at the beginning of string
#' @keywords internal
#' @export
printVecAsis <- function(x, asChar = FALSE) {
  if (is.character(x)) {
    if (length(x) == 1) {
      return(paste0("\'", x, "\'"))
    } else {
      if (asChar == FALSE) {
        return(paste0("c(", paste(sapply(x, function(a) paste0("\'", a, "\'")),
                                  collapse = ", "), ")"))
      } else {
        return(paste0("(", paste(sapply(x, function(a) paste0("\'", a, "\'")),
                                 collapse = ", "), ")"))
      }
    }
  } else {
    if (length(x) == 1) {
      return(x)
    } else {
      if (asChar == FALSE) {
        return(paste0("c(", paste(x, collapse = ", "), ")"))
      } else {
        return(paste0("(", paste(x, collapse = ", "), ")"))
      }
    }
  }
}

#' @title Spurious package call to avoid note of functions outside R folder
#' @description For internal use.
#' @param x x
#' @keywords internal
#' @export
spurious <- function(x) {
  DT::renderDataTable(x)
  RColorBrewer::brewer.pal(x)
  leafem::addMouseCoordinates(x)
  leaflet.extras::removeDrawToolbar(x)
  markdown::html_format()
  rmarkdown::github_document(x)
  shinyWidgets::pickerInput(x)
  shinyjs::disable(x)
  zip::zipr(x)
  return()
}

####################### #
# SHINY LOG #
####################### #

#' @title fmtSpN
#' @description For internal use. Format species name with underscore
#' @param spN Species name
#' @keywords internal
#' @export
fmtSpN <- function(spN) {
  spN <- as.character(spN)
  # separate by space
  spN.fmt <- sapply(spN, function(x) strsplit(x, split = ' '))
  # put underscores in
  spN.fmt <- sapply(spN.fmt, function(x) paste(x, collapse = '_'))
  return(spN.fmt)
}

#' @title hlSpp
#' @description For internal use. Green and bold species name in Windows Log
#' @param spN Species name
#' @keywords internal
#' @export
hlSpp <- function(spN) {
  if (is.null(spN)) {
    return("")
  } else if (grepl("_", spN)) {
    spN <- gsub("_", " ", spN)
    boldSpp <- paste0('<font color="#003300"><b><i>', spN, '</i> | </b></font>')
    return(boldSpp)
  }
}

#' @title smartProgress
#' @description For internal use. Either prints a message to console or makes
#' a progress bar in the shiny app the entry of the first param "logs" turns on
#' shiny functionality
#' @param logs Wallace logger
#' @param message A single-element character vector; the message to be displayed
#'   to the user.
#' @param expr The work to be done.
#' @keywords internal
#' @export
smartProgress <- function(logs, message, expr) {
  if(!is.null(logs)) {
    withProgress(message = message, expr)
  } else {
    message(message)
    expr
  }
}

#' @title spName
#' @description For internal use. Retrieves the species name for use internally
#'   in non-shiny functions
#' @param spN Species name
#' @keywords internal
#' @export
spName <- function(spN) {
  if (is.null(spN)) {
    return("species")
  } else {
    return(paste(strsplit(as.character(spN), "_")[[1]], collapse = " "))
  }
}

#' @title writeLog
#' @description For internal use. Add text to a logger
#' @param logger The logger to write the text to. Can be NULL or a function
#' @param ... Messages to write to the logger
#' @param type One of "default", "error", "warning"
#' @keywords internal
#' @export
writeLog <- function(logger, ..., type = 'default') {
  if (is.null(logger)) {
    if (type == 'error') {
      stop(paste0(..., collapse = ""), call. = FALSE)
    } else if (type == 'warning') {
      warning(paste0(..., collapse = ""), call. = FALSE)
    } else {
      message(paste0(..., collapse = ""))
    }
  } else if (is.function(logger)) {
    if (type == "default") {
      pre <- "> "
    } else if (type == 'error') {
      shinyalert::shinyalert("Please, check Log window for more information ",
                             type = "error")
      pre <- '> <font color="red"><b>! ERROR</b></font> : '
    } else if (type == 'warning') {
      shinyalert::shinyalert("Please, check Log window for more information ",
                             type = "warning")
      pre <- '> <font color="orange"><b>! WARNING</b></font> : '
    }
    newEntries <- paste0('<br>', pre, ..., collapse = "")
    logger(paste0(logger(), newEntries))
  } else {
    warning("Invalid logger type")
  }
  invisible()
}

####################### #
# MAPPING #
####################### #

#' @title clearAll
#' @description For internal use. Clean everything in leaflet map.
#' @param map leaflet map
#' @keywords internal
#' @export
clearAll <- function(map) {
  map %>% clearMarkers() %>% clearShapes() %>% clearImages() %>%
    clearControls() %>% removeLayersControl()
}

#' @title polyZoom
#' @description For internal use. Zooms appropriately for any polygon
#' @param xmin Minimum longitude
#' @param xmax Maximum longitude
#' @param ymin Minimum latitude
#' @param ymax Maximum latitude
#' @param fraction Expand zoom fraction
#' @keywords internal
#' @export
polyZoom <- function(xmin, ymin, xmax, ymax, fraction) {
  x <- (xmax - xmin) * fraction
  y <- (ymax - ymin) * fraction
  x1 <- xmin - x
  x2 <- xmax + x
  y1 <- ymin - y
  y2 <- ymax + y
  return(c(x1, y1, x2, y2))
}

#' @title zoom2Occs
#' @description For internal use. Zoom to occ pts.
#' @param map leaflet map
#' @param occs occurrences table
#' @keywords internal
#' @export
zoom2Occs <- function(map, occs) {
  lat <- occs["latitude"]
  lon <- occs["longitude"]
  lg.diff <- abs(max(lon) - min(lon))
  lt.diff <- abs(max(lat) - min(lat))
  if (lg.diff > 1) lg.diff <- 1
  if (lt.diff > 1) lt.diff <- 1
  z <- c(min(lon - lg.diff), min(lat - lt.diff),
         max(lon + lg.diff), max(lat + lt.diff))
  map %>% fitBounds(z[1], z[2], z[3], z[4])

  ## this section makes letter icons for occs based on basisOfRecord
  # makeOccIcons <- function(width = 10, height = 10, ...) {
  #   occIcons <- c('H', 'O', 'P', 'U', 'F', 'M', 'I', 'L', 'A', 'X')
  #   files <- character(9)
  #   # create a sequence of png images
  #   for (i in 1:9) {
  #     f <- tempfile(fileext = '.png')
  #     png(f, width = width, height = height, bg = 'transparent')
  #     graphics::par(mar = c(0, 0, 0, 0))
  #     plot.new()
  #     graphics::points(.5, .5, pch = occIcons[i], cex = min(width, height) / 8, col='red', ...)
  #     dev.off()
  #     files[i] <- f
  #   }
  #   files
  # }
  # occIcons <- makeOccIcons()
  # iconList <- list(HUMAN_OBSERVATION=1, OBSERVATION=2, PRESERVED_SPECIMEN=3,
  #                  UNKNOWN_EVIDENCE=4, FOSSIL_SPECIMEN=5, MACHINE_OBSERVATION=6,
  #                  LIVING_SPECIMEN=7, LITERATURE_OCCURRENCE=8, MATERIAL_SAMPLE=9)
  # values$origOccs$basisNum <- unlist(iconList[values$origOccs$basisOfRecord])
  # proxy %>% addMarkers(data = values$origOccs, lat = ~latitude, lng = ~longitude,
  #                      layerId = as.numeric(rownames(values$origOccs)),
  #                      icon = ~icons(occIcons[basisNum]))
}

####################### #
# OBTAIN OCCS #
####################### #
#' @title popUpContent
#' @description For internal use. Make new column for leaflet marker popup content
#' @param occs occurrence table
#' @keywords internal
#' @export
popUpContent <- function(occs) {
  lat <- round(as.numeric(occs['latitude']), digits = 2)
  lon <- round(as.numeric(occs['longitude']), digits = 2)
  as.character(tagList(
    tags$strong(paste("occID:", occs['occID'])),
    tags$br(),
    tags$strong(paste("Latitude:", lat)),
    tags$br(),
    tags$strong(paste("Longitude:", lon)),
    tags$br(),
    tags$strong(paste("Year:", occs['year'])),
    tags$br(),
    tags$strong(paste("Inst. Code:", occs['institutionCode'])),
    tags$br(),
    tags$strong(paste("Country:", occs['country'])),
    tags$br(),
    tags$strong(paste("State/Prov.:", occs['stateProvince'])),
    tags$br(),
    tags$strong(paste("Locality:", occs['locality'])),
    tags$br(),
    tags$strong(paste("Elevation:", occs['elevation'])),
    tags$br(),
    tags$strong(paste("Basis of Record:", occs['basisOfRecord']))
  ))
}

####################### #
# ENV DATA #
####################### #
#' @title remEnvsValsNA
#' @description For internal use. Remove occs with NA values
#' @param occs occurrence table
#' @param occsEnvsVals Occurrence table with environmental values
#' @param spN Species name
#' @param logger Wallace logger
#' @keywords internal
#' @export
remEnvsValsNA <- function(occs, occsEnvsVals, spN, logger) {
  withProgress(message = "Checking for points with NA values and in same cells...", {
    na.rowNums <- which(rowSums(is.na(occsEnvsVals[, -1])) >= 1)
    if (length(na.rowNums) == nrow(occsEnvsVals)) {
      logger %>% writeLog(
        type = 'error',
        hlSpp(spN),
        paste0('No localities overlay with environmental ',
               'predictors. For example, all localities may be marine -- please redo with ',
               'terrestrial occurrences.')
      )
      return()
    }
    if (length(na.rowNums) > 0) {
      logger %>% writeLog(
        type = 'warning',
        hlSpp(spN),
        'Removed records without environmental values with occIDs: ',
        paste(sort(occs[na.rowNums, "occID"]), collapse = ', '), ".")
      occs <- occs[-na.rowNums, ]
      occsEnvsVals <- occsEnvsVals[-na.rowNums, ]
    }
    # Remove same cell duplicates
    occs.dups <- duplicated(occsEnvsVals[, 1])
    if (sum(occs.dups) > 0) {
      logger %>%
        writeLog(
          type = 'warning',
          hlSpp(spN), "Removed ", sum(occs.dups), " localities that ",
          "shared the same grid cell. occIDs: ",
          paste(sort(occs[occs.dups, "occID"]), collapse = ', '), ".")
      occs <- occs[!occs.dups, ]
      occsEnvsVals <- occsEnvsVals[!occs.dups, ]
    }
    return(list(occs = occs, occsEnvsVals = occsEnvsVals))
  })
}

####################### #
# ESPACE #
####################### #
#' @title ecospat.plot.nicheDEV
#' @description For internal use. Plot occ density
#' @param z A gridclim object for the species distribution created by ecospat.grid.clim.dyn()/espace_occDens().
#' @param title A title for the plot.
#' @param name.axis1 A label for the first axis.
#' @param name.axis2 A label for the second axis.
#' @param cor Correct the occurrence densities of the species by the prevalence of the environments in its range (TRUE = yes, FALSE = no).
#' @keywords internal
#' @export
ecospat.plot.nicheDEV <- function(z, title = "", name.axis1 = "Axis 1", name.axis2 = "Axis 2", cor = FALSE) {
  if (is.null(z$y)) {
    R <- length(z$x)
    x <- z$x
    xx <- sort(rep(1:length(x), 2))
    if (cor == FALSE)
      y1 <- z$z.uncor/max(z$z.uncor)
    if (cor == TRUE)
      y1 <- z$z.cor/max(z$z.cor)
    Y1 <- z$Z/max(z$Z)
    yy1 <- sort(rep(1:length(y1), 2))[-c(1:2, length(y1) * 2)]
    YY1 <- sort(rep(1:length(Y1), 2))[-c(1:2, length(Y1) * 2)]
    plot(x, y1, type = "n", xlab = name.axis1, ylab = "density of occurrence")
    graphics::polygon(x[xx], c(0, y1[yy1], 0, 0), col = "grey")
    graphics::lines(x[xx], c(0, Y1[YY1], 0, 0))
  }
  if (!is.null(z$y)) {
    if (cor == FALSE)
      terra::plot(z$z.uncor,col=grDevices::gray(100:0 / 100),legend=FALSE, xlab = name.axis1,
                  ylab = name.axis2,mar = c(3.1,3.1,2.1,3.1))
    if (cor == TRUE)
      terra::plot(z$z.cor,col=grDevices::gray(100:0 / 100),legend=FALSE, xlab = name.axis1,
                  ylab = name.axis2,mar = c(3.1,3.1,2.1,3.1))
    terra::contour(
      z$Z, add = TRUE, levels = stats::quantile(z$Z[z$Z > 0], c(0, 0.5)),
      drawlabels = FALSE, lty = c(1, 2)
    )
  }
  title(title)
}
# end of espace. BAJ added 10/31/2023 after ecospat.plot.niche() from ecospat 4.0.0 wasn't working

####################### #
# VISUALIZE & TRANSFER #
####################### #
#' @title getRasterVals
#' @description Retrieve the value range for a prediction raster for plotting
#' @param r raster
#' @param type Maxent prediction type. It can be "raw", "logistic" or "cloglog"
#' @keywords internal
#' @export
getRasterVals <- function(r, type = 'raw') {
  v <- raster::values(r)
  # remove NAs
  v <- v[!is.na(v)]
  if(type == 'logistic' | type == 'cloglog') v <- c(v, 0, 1)  # set to 0-1 scale
  return(v)
}

#' @title mxNonzeroCoefs
#' @description For internal use. Pulls out all non-zero, non-redundant
#' (removes hinge/product/threshold) predictor names
#' @param mx Model object
#' @param alg Maxent version used. It can be "maxent.jar" or "maxnet"
#' @keywords internal
#' @export
mxNonzeroCoefs <- function(mx, alg) {
  if (alg == "maxent.jar") {
    lambdas <- mx@lambdas[1:(length(mx@lambdas)-4)]
    x <- data.frame(var = sapply(lambdas, FUN = function(x) strsplit(x, ',')[[1]][1]),
                    coef = sapply(lambdas, FUN = function(x) as.numeric(strsplit(x, ',')[[1]][2])),
                    row.names = 1:length(lambdas))
    #remove any rows that have a zero lambdas value (Second column)
    x <- x[(x[,2] != 0),]
    #remove any rows that have duplicate "var"s (hinges, quadratics, product)
    x <- unique(sub("\\^\\S*", "", x[,1]))
    x <- unique(sub("\\`", "", x))
    x <- unique(sub("\\'", "", x))
    x <- unique(sub("\\=\\S*", "", x))
    x <- unique(sub("\\(", "", x))
    x <- unique(unlist(strsplit(x, split = "\\*")))
    x <- sort(x)
  } else if (alg == "maxnet") {
    lambdas <- mx$betas
    x <- data.frame(var = names(lambdas),
                    coef = lambdas,
                    row.names = 1:length(lambdas))
    #remove any rows that have a zero lambdas value (Second column)
    x <- x[(x[,2] != 0),]
    #remove any rows that have duplicate "var"s (hinges, quadratics, product)
    x <- unique(sub("\\^\\S*", "", x[,1]))
    x <- unique(sub("\\I", "", x))
    x <- unique(sub("\\hinge", "", x))
    x <- unique(sub("\\categorical", "", x))
    x <- unique(sub("\\)\\:\\S*", "", x))
    x <- unique(sub("\\(", "", x))
    x <- unique(unlist(strsplit(x, split = "\\:")))
    x <- sort(x)
  }
}

#' @title predictMaxnet
#' @description Create a raster prediction for a maxnet model
#' @param mod Model object
#' @param envs Environmental rasters
#' @param clamp Use clamping. Boolean
#' @param type Maxent prediction type. It can be "raw", "logistic" or "cloglog"
#' @keywords internal
#' @export
predictMaxnet <- function(mod, envs, clamp, type) {
  requireNamespace("maxnet", quietly = TRUE)
  envs.n <- raster::nlayers(envs)
  envs.pts <- raster::getValues(envs) %>% as.data.frame()
  mxnet.p <- stats::predict(mod, envs.pts, type = type,
                            clamp = clamp)
  envs.pts[as.numeric(row.names(mxnet.p)), "pred"] <- mxnet.p
  pred <- raster::rasterFromXYZ(cbind(raster::coordinates(envs),
                                      envs.pts$pred),
                                res = raster::res(envs),
                                crs = raster::crs(envs))
  return(pred)
}

#' @title reverseLabel
#' @description For internal use. Reverse label in leaflet legends
#' @param ... labelFormat parameters
#' @param reverse_order Reverse order or legends
#' @keywords internal
#' @export
reverseLabel <- function(..., reverse_order = FALSE) {
  if (reverse_order) {
    function(type = "numeric", cuts) {
      cuts <- sort(cuts, decreasing = TRUE)
    }
  } else {
    labelFormat(...)
  }
}

##################### #
# DOWNLOAD #
##################### #
#' @title write_csv_robust
#' @description For internal use. Write Robust CSV
#' @param x Table
#' @param ... labelFormat parameters
#' @keywords internal
#' @export
write_csv_robust <- function(x, ...) {
  a <- dplyr::mutate_if(.tbl = x,
                        .predicate = function(col) inherits(col, "list"),
                        .funs = function(col) {
                       vapply(col,
                              jsonlite::toJSON,
                              character(1L))
                          })
  utils::write.csv(a, ...)
}

Try the wallace package in your browser

Any scripts or data that you put into this service are public.

wallace documentation built on Sept. 11, 2024, 9:16 p.m.