R/lrEM.R

Defines functions lrEM

Documented in lrEM

lrEM <- function(X,label=NULL,dl=NULL,rob=FALSE,ini.cov=c("complete.obs","multRepl"),frac=0.65,tolerance=0.0001,
         max.iter=50,rlm.maxit=150,imp.missing=FALSE,suppress.print=FALSE,
         closure=NULL,z.warning=0.8,z.delete=TRUE,delta=NULL){
  
  if (any(X<0, na.rm=T)) stop("X contains negative values")

  if ((is.vector(X)) | (nrow(X)==1)) stop("X must be a data matrix")
  if (is.null(label)) stop("A value for label must be given")
  if (!is.na(label)){
    if (!any(X==label,na.rm=T)) stop(paste("Label",label,"was not found in the data set"))
    if (label!=0 & any(X==0,na.rm=T)) stop("Zero values not labelled as censored or missing values were found in the data set")
    if (any(is.na(X))) stop(paste("NA values not labelled as censored or missing values were found in the data set"))
  }
  if (is.na(label)){
    if (any(X==0,na.rm=T)) stop("Zero values not labelled as censored or missing values were found in the data set")
    if (!any(is.na(X),na.rm=T)) stop(paste("Label",label,"was not found in the data set"))
  }
  
  if (imp.missing==FALSE){
    if (is.character(dl)) stop("dl must be a numeric vector or matrix")
    if (is.null(dl)){ # If dl not given use min per column
      dl <- apply(X,2, function(x) min(x[x!=label]))
      warning("No dl vector or matrix provided. The minimum observed values for each column used as detection limits.")
    }
    if (is.vector(dl)) dl <- matrix(dl,nrow=1)
    dl <- as.matrix(dl) # Avoids problems when dl might be multiple classes
  }
  
  if (imp.missing==FALSE){
    if (ncol(dl)!=ncol(X)) stop("The number of columns in X and dl do not agree")
    if ((nrow(dl)>1) & (nrow(dl)!=nrow(X))) stop("The number of rows in X and dl do not agree")
  }
  
  if (!missing("delta")){
    warning("The delta argument is deprecated, use frac instead: frac has been set equal to delta.")
    frac <- delta
  }
  
  ini.cov <- match.arg(ini.cov)
  
  lm.sweep <- function(M,C,varobs){
    
    sweep.matrix <- function(A,ind){ 
      
      nn <- nrow(A); D <- ncol(A)
      S <- A
      
      for (j in ind){                       
        S[j,j] <- -1/A[j,j]     
        for (i in 1:D) {           
          if (i != j){
            S[i,j] <- -A[i,j]*S[j,j]
            S[j,i] <- S[i,j]
          }
        }
        for (i in 1:D){           
          if (i != j){
            for (k  in 1:D){
              if (k != j){
                S[i,k] <- A[i,k] - S[i,j]*A[j,k]
                S[k,i] <- S[i,k]
              }
            }
          }
        }
        A <- S 
      }
      return(A)
    }  
    
    D <- length(M)                      
    q <- length(varobs)                     
    i <- rep(1,D)                  
    i[varobs] <- i[varobs]-1
    dep <- which(i!=0)
    ndep <- length(dep)                 
    
    A <- matrix(0,D+1,D+1)             
    A[1,1] <- -1                    
    A[1,2:(D+1)] <- M                
    A[2:(D+1),1] <- matrix(M,ncol=1)
    A[2:(D+1),2:(D+1)] <- C             
    
    reor <- c(1,varobs+1,dep+1)     
    A <- A[reor,reor]              
    A <- sweep.matrix(A,1:(q+1))             
    
    B <- A[1:(q+1),(q+2):(D+1)]       
    CR <- A[(q+2):(D+1),(q+2):(D+1)]       
    
    return(list(betas=B,resid=CR))
  }
  
  inv.alr <- function(x,pos){
    
    ad<-1/(rowSums(exp(x))+1)
    ax<-exp(x)*ad
    if(pos==1) {
      a<-cbind(ad,ax,stringsAsFactors=TRUE)
    }
    else { 
      if (dim(x)[2] < pos){
        a<-cbind(ax,ad,stringsAsFactors=TRUE)
      }   
      else {
        a<-cbind(ax[,1:(pos-1)],ad,ax[,pos:(dim(x)[2])],stringsAsFactors=TRUE)
      }
    }
    return(a)
  }
  
  ilr <- function (x){
    
    D <- length(x)
    z <- vector(mode="double",length=D-1)
    
    for (i in 1:(D-1)){
      z[i] <- sqrt((D-i)/(D-i+1))*log(x[i]/((prod(x[(i+1):D]))^(1/(D-i))))
    }
    return(as.numeric(z))
  }
  
  inv.ilr <- function(z){
    
    D <- length(z) + 1
    x <- vector(mode="double",length=D)
    
    x[1] <- exp(sqrt((D-1)/D)*z[1])
    for (i in 2:(D-1)){
      x[i] <- exp(-sum((1/sqrt((D-1:(i-1)+1)*(D-1:(i-1))))*z[1:(i-1)]) + sqrt(D-i)/sqrt(D-i+1)*z[i]) 
    }
    x[D] <- exp(-sum((1/sqrt((D-1:(D-1)+1)*(D-1:(D-1))))*z[1:(D-1)]))
    
    x <- x/sum(x)
    return(x)
  }
  
  ## Preliminaries ----  
  
  X <- as.data.frame(X,stringsAsFactors=TRUE)
  nn <- nrow(X); D <- ncol(X)
  if (nn <= D) stop("The lrEM algorithm works on regular data sets (no. rows > no. columns). You can consider lrSVD for wide dat sets.")
  
  X[X==label] <- NA
  X <- as.data.frame(apply(X,2,as.numeric),stringsAsFactors=TRUE)
  c <- apply(X,1,sum,na.rm=TRUE)
  
  checkNumZerosCol <- apply(X, 2, function(x) sum(is.na(x)))
  
  if (any(checkNumZerosCol/nrow(X) > z.warning)) {    
    cases <- which(checkNumZerosCol/nrow(X) > z.warning)    
    if (z.delete == TRUE) {
      if (length(cases) > (ncol(X)-2)) {
        stop(paste("Almost all columns contain >", z.warning*100,
                   "% zeros/unobserved values (see arguments z.warning and z.delete).",
                   sep=""))
      }      
      X <- X[,-cases]      
      action <- "deleted"
      
      warning(paste("Column no. ",cases," containing >", z.warning*100,
                    "% zeros/unobserved values ", action, " (see arguments z.warning and z.delete).\n",
                    sep=""))
    } else {      
      action <- "found"      
      warning(paste("Column no. ",cases," containing >", z.warning*100,
                    "% zeros/unobserved values ", action, " (see arguments z.warning and z.delete. Check out with zPatterns()).\n",
                    sep=""))      
    }
  }
  
  checkNumZerosRow <- apply(X, 1, function(x) sum(is.na(x)))  
  if (any(checkNumZerosRow/ncol(X) > z.warning)) {    
    cases <- which(checkNumZerosRow/ncol(X) > z.warning)    
    if (z.delete == TRUE) {
      if (length(cases) > (nrow(X)-2)) {
        stop(paste("Almost all rows contain >", z.warning*100,
                   "% zeros/unobserved values (see arguments z.warning and z.delete).",
                   sep=""))
      }
      X <- X[-cases,]      
      action <- "deleted"
      
      warning(paste("Row no. ",cases," containing >", z.warning*100,
                    "% zeros/unobserved values ", action, " (see arguments z.warning and z.delete).\n",
                    sep=""))
    } else {      
      action <- "found"      
      warning(paste("Row no. ", cases," containing >", z.warning*100,
                    "% zeros/unobserved values ", action,
                    " (see arguments z.warning and z.delete. Check out with zPatterns()).\n",
                    sep=""))      
    }
  }
  
  if (imp.missing==FALSE) {if (nrow(dl)==1) dl <- matrix(rep(1,nn),ncol=1)%*%dl}
  
  # Check for closure
  closed <- 0
  if (all( abs(c - mean(c)) < .Machine$double.eps^0.3 )) closed <- 1
  
  misspat <- as.data.frame(is.na(X)*1,stringsAsFactors=TRUE)
  misspat <- as.factor(do.call(paste,c(misspat,sep="")))
  levels(misspat) <- 1:(length(levels(misspat)))
  
  ## Ordinary lrEM  ----
  
  if (rob==FALSE){
    
    pos <- which(!is.na(colSums(X)))[1]
    if (is.na(pos)) stop("lrEM based on alr requires at least one complete column")
    
    if (imp.missing==FALSE){
    cpoints <- log(dl)-log(X[,pos])-.Machine$double.eps
    cpoints <- cpoints[,-pos]
    }
    
    X_alr <- log(X)-log(X[,pos]); X_alr <- as.matrix(X_alr[,-pos])
    nn <- nrow(X_alr); D <- ncol(X_alr)
    
    if (ini.cov != "multRepl"){
      if (inherits(try(solve(cov(X_alr,use=ini.cov)),silent=TRUE),"try-error"))
        stop("ini.cov: singular initial covariance matrix. Probably too few complete rows in data set for using 'complete.obs'")
      M <- matrix(colMeans(X_alr,na.rm=T),ncol=1)
      C <- cov(X_alr,use=ini.cov)}
    else {
        X.mr <- multRepl(X,label=NA,dl=dl,frac=frac,imp.missing=imp.missing,closure=closure,z.warning=z.warning,z.delete=z.delete)
        if (any(X.mr < 0)) {stop("ini.cov: negative values produced using multRepl (please check out closure argument and multRepl help for advice)")}
        X.mr_alr <- t(apply(X.mr,1,function(x) log(x)-log(x[pos])))[,-pos]
        M <- matrix(colMeans(X.mr_alr,na.rm=T),ncol=1)
        C <- cov(X.mr_alr)
        }  
    
    iter_again <- 1
    niters <- 0
    alt.in <- FALSE
    alt.pat <- 0
    alt.mr <- 0
    
    while (iter_again == 1){
      
      niters <- niters + 1
      Mnew <- M                       
      Cnew <- C
      Y <- X_alr                              
      v <- matrix(0,D,D)
      
      for (npat in 1:length(levels(misspat))){
        i <- which(misspat==npat) 
        varmiss <- which(is.na(X_alr[i[1],]))
        if (length(varmiss) == 0) {next} # Skip first pattern if all obs
        varobs <- which(!is.na(X_alr[i[1],]))
        if (length(varobs) == 0){
          alt.in <- TRUE
          temp <- multRepl(X[i,,drop=FALSE],label=NA,dl=dl[i,,drop=FALSE],frac=frac,imp.missing=imp.missing,closure=closure,z.warning=z.warning,z.delete=z.delete)
          Y[i,] <- t(apply(temp,1,function(x) log(x)-log(x[pos])))[,-pos]
          if (niters == 1){
            alt.pat <- c(alt.pat,npat)
            alt.mr <- list(alt.mr,i)
          }
          break
        }
        sigmas <- matrix(0,ncol=D)
        B <- matrix(lm.sweep(M,C,varobs)[[1]],ncol=length(varmiss))
        CR <- lm.sweep(M,C,varobs)[[2]]
        Y[i,varmiss] <- matrix(1,nrow=length(i))%*%B[1,] + X_alr[i, varobs, drop=FALSE]%*%B[2:(length(varobs)+1),]
        sigmas[varmiss] <- sqrt(diag(as.matrix(CR)))
        if (imp.missing==FALSE){
          for (j in 1:length(varmiss)){
            sigma <- sigmas[varmiss[j]]
            fdN01 <- dnorm((cpoints[i,varmiss[j]]-Y[i,varmiss[j]])/sigma)
            fdistN01 <- pnorm((cpoints[i,varmiss[j]]-Y[i,varmiss[j]])/sigma)
            Y[i,varmiss[j]] <- Y[i,varmiss[j]]-sigma*(fdN01/fdistN01)
          }
        }
        v[varmiss,varmiss] <- v[varmiss,varmiss] + CR*length(i)
      }
      
      M <- matrix(colMeans(Y),ncol=1)
      dif <- Y - matrix(1,nrow=nn)%*%t(M)              
      PC <- t(dif)%*%dif                       
      C <- (PC+v)/(nn-1)   
      
      # Convergence check
      Mdif <- max(abs(M-Mnew))    
      Cdif <- max(max(abs(C-Cnew)))  
      if ((max(c(Mdif,Cdif)) < tolerance) | (niters == max.iter)) iter_again <- 0
    }
    
    Y <- inv.alr(Y,pos)
    
    for (i in 1:nn){
      if (any(is.na(X[i,]))){
        vbdl <- which(is.na(X[i,]))
        X[i,vbdl] <- (X[i,pos]/Y[i,pos])*Y[i,vbdl]
      }
    }     
  } # End ordinary lrEM
  
  ## Robust lrEM ----
  
  if (rob==TRUE){
    
    if (ini.cov == "multRepl"){
     if (imp.missing == TRUE){
          X.mr <- multRepl(X,label=NA,imp.missing=T,closure=closure,z.warning=z.warning,z.delete=z.delete)
          if (any(X.mr < 0)) {stop("ini.cov: negative values produced using multRepl (please check out closure argument and multRepl help for advice)")}
          }
     else {X.mr <- multRepl(X,label=NA,dl=dl,frac=frac,closure=closure,z.warning=z.warning,z.delete=z.delete)
           if (any(X.mr < 0)) {stop("ini.cov: negative values produced using multRepl (please check out closure argument and multRepl help for advice)")}
          }
    }
      
    miss <- by(X,misspat,function(x) which(is.na(x[1,])))
    obs <- by(X,misspat,function(x) which(!is.na(x[1,])))
    
    iter_again <- 1
    niters <- 0
    X.old <- X
    alt.in <- FALSE
    alt.pat <- 0
    alt.mr <- 0
    
    nnn <- 0
    
    while (iter_again == 1){
      
      niters <- niters+1
      if (niters > 1) {X.old <- X; C.old <- C}
      
      for (npat in 1:length(levels(misspat))){
        if (length(miss[[npat]]) == 0) {next} # Skip first pattern if all obs
        if ((length(obs[[npat]]) == 1) & (!any(npat==alt.pat))){
          alt.in <- TRUE
          if (imp.missing==FALSE){
            X[misspat==npat,] <- multRepl(X.old[misspat==npat,,drop=FALSE],
                                          label=NA,dl=dl[misspat==npat,,drop=FALSE],
                                          frac=frac,closure=closure,z.warning=z.warning,z.delete=z.delete)    
          }
          if (imp.missing==TRUE){
            stop("Please remove samples with only one observed component (check it out using zPatterns).")
          }
          alt.pat <- c(alt.pat,npat)
          alt.mr <- list(alt.mr,which(misspat==npat))
        }
        if (length(obs[[npat]]) > 1) {
          feeder <- X.old[,obs[[npat]]]
          for (m in 1:length(miss[[npat]])){
            p <- miss[[npat]][m]
            target <- X.old[,p]
            if (imp.missing==FALSE){
              phi <- t(apply(cbind(dl=dl[misspat==npat,p],feeder[misspat==npat,],stringsAsFactors=TRUE),1,ilr))
            }
            regbasis <- as.data.frame(t(apply(cbind(target,feeder),1,ilr)),stringsAsFactors=TRUE)
            
            if (niters == 1){
              if (ini.cov == "complete.obs"){
                if (nrow(regbasis[misspat==1,]) > ncol(regbasis[misspat==1,]))
                  robreg <- rlm(V1 ~ .,data=regbasis[misspat==1,],method="MM",maxit = rlm.maxit)
                else
                  stop("ini.cov: singular initial covariance matrix. Probably too few complete rows in data set. Use ini.cov = 'multRepl' instead")
              }
              if (ini.cov == "multRepl"){
                target <- X.mr[,p]
                feeder <- X.mr[,obs[[npat]]]
                regbasis.mr <- as.data.frame(t(apply(cbind(target,feeder),1,ilr)),stringsAsFactors=TRUE)
                robreg <- rlm(V1 ~ .,data=regbasis.mr,method="MM",maxit = rlm.maxit)
              }  
            }
            else
              robreg <- rlm(V1 ~ .,data=regbasis,method="MM",maxit = rlm.maxit)
            
            B <- matrix(robreg$coefficients,ncol=1)
            sigma <- robreg$s
            est <- cbind(V1=B[1,] + as.matrix(regbasis[misspat==npat,-1])%*%B[-1,],regbasis[misspat==npat,-1],stringsAsFactors=TRUE)
            if (imp.missing==FALSE){
              est[,1] <- est[,1] - sigma*(dnorm((phi[,1]-est[,1])/sigma)/pnorm((phi[,1]-est[,1])/sigma))
            }
            est <- t(apply(est,1,inv.ilr))
            est <- est[,1]*(feeder[misspat==npat,1]/est[,2])
            X[misspat==npat,p] <- est
          }
        }    
      }
      
      C <- cov(t(apply(X,1,ilr)))
      
      # Convergence check
      
      if (niters > 1)
        if((norm(C-C.old,type="F") < tolerance) | (niters == max.iter)) iter_again <- 0
      
    } 
  } # End robust lrEM
  
  ## Final section ----
  
  if (closed==1){
    X <- t(apply(X,1,function(x) x/sum(x)*c[1]))
  }
  
  if (suppress.print==FALSE){
    if (alt.in) {
      if (imp.missing==FALSE){
        warning("Censoring patterns with only one observed component in the data set.")
        cat("Censored samples with only one observed component imputed by simple multiplicative replacement. \n")
        for (i in 2:length(alt.pat)){
          cat("Row numbers: "); cat(alt.mr[[i]]); cat("\n\n")
        }
      }
    }
  cat(paste("No. iterations to converge: ",niters,"\n\n"))
  }
  
  return(as.data.frame(X,stringsAsFactors=TRUE))  
  
}

Try the zCompositions package in your browser

Any scripts or data that you put into this service are public.

zCompositions documentation built on June 22, 2024, 9:46 a.m.