#' Calculate selection statistics (LD) and perform exploratory analyses
#' for two sets of variants via R snpStats package
#' https://bioconductor.org/packages/release/bioc/manuals/snpStats/man/snpStats.pdf
#' @param plinkF (char) path to file with SNP genotype data (PLINK format)
#' @param highSnpDir (char) path to files with pathway SNP lists
#' @param makePlots (logical) set to TRUE to generate plots
#' @return
#' @export
calculateAssoc_pops <- function(plinkPop1F, plinkPop2,
hcPop1Dir, hcPop2Dir,
makePlots=FALSE) {
# Read PLINK files for each high confidence pathway
# NOTE: hc = high confidence
hc.bed.pop1 <- list.files(path=hcPop1Dir, pattern="*.bed", full.names=T)
hc.bim.pop1 <- list.files(path=hcPop1Dir, pattern="*.bim", full.names=T)
hc.fam.pop1 <- list.files(path=hcPop1Dir, pattern="*.fam", full.names=T)
hc.list.pop1 <- c()
hc.ld.calc.pop1 <- list()
hc.pair.df.pop1 <- list()
hc.diff.r2.pop1 <- list()
hc.diff.dp.pop1 <- list()
message("\n-------HIGH CONFIDENCE PATHWAY SNPS -- POPULATION 1 -------\n")
for (i in 1:length(hc.bed.pop1)) {
# Convert PLINK files to snpStats input format
# Output object is a list with 3 elements ($genotypes, $fam, $map)
# NOTE: order is important!
hc.list.pop1[[i]] <- read.plink(hc.bed.pop1[i], hc.bim.pop1[i],
hc.fam.pop1[i])
# Calculate linkage disequilbrium statistics
# NOTE: argument 'depth' specifies the max. separation b/w pairs of SNPs
# to be considered, so that depth=1 would specify calculation of LD b/w
# immediately adjacent SNPs. For our purposes we want to determine LD
# b/w all SNPs in each pathway despite their distance from each other,
# so we specify depth as ((number of SNPs)-1)
cat(sprintf("Calculating LD statistics for SNPs in %s pathway...",
basename(file_path_sans_ext(hc.bed.pop1[i]))))
hc.ld.calc.pop1[[i]] <- ld(hc.list.pop1[[i]]$genotypes,
stats=c("D.prime", "R.squared"),
depth=ncol(hc.list.pop1[[i]]$genotypes)-1)
# Create dataframe containing pairwise distance calculations for each
# LD SNP-SNP pair
snp.map <- hc.list.pop1[[i]]$map
# Turn each LD matrix into a data frame
hc.r2 <- as.matrix(hc.ld.calc.pop1[[i]]$R.squared) #convert sparseMatrix to regular matrix
hc.r2 <- subset(melt(hc.r2), value!=0) #for all non-zero values
colnames(hc.r2)[3] <- "R.squared"
hc.dp <- as.matrix(hc.ld.calc.pop1[[i]]$D.prime)
hc.dp <- subset(melt(hc.dp), value!=0)
colnames(hc.dp)[3] <- "D.prime"
# Combine R2 and Dprime stats for each SNP-SNP pair
hc.all.stats <- merge(hc.r2, hc.dp, by=c("Var1", "Var2"))
# Generate pariwise distance table for each SNP-SNP pair
colnames(hc.all.stats)[1] <- "snp.name"
snp.map <- subset(snp.map, select=c("snp.name", "chromosome", "position"))
hc.pair <- merge(snp.map, hc.all.stats, by="snp.name")
colnames(hc.pair)[1:4] <- c("snp_1", "chr_1", "pos_1", "snp.name")
hc.pair <- merge(snp.map, hc.pair, by="snp.name")
colnames(hc.pair) <- c("snp_1", "chr_1", "pos_1", "snp_2",
"chr_2", "pos_2", "R.squared", "D.prime")
hc.pair$dist <- abs(hc.pair$pos_1 - hc.pair$pos_2)
hc.pair.df.pop1[[i]] <- hc.pair %>% mutate(R.squared=round(R.squared, 3))
hc.pair.df.pop1[[i]] <- hc.pair %>% mutate(D.prime=round(D.prime, 3))
hc.diff.r2.pop1[[i]] <- filter(hc.pair.df.pop1[[i]], chr_1 != chr_2) %>%
select(R.squared) %>% unlist
hc.diff.dp.pop1[[i]] <- filter(hc.pair.df.pop1[[i]], chr_1 != chr_2) %>%
select(D.prime) %>% unlist
cat(" done.\n")
}
# Same calculations as above for population 2
hc.bed.pop2 <- list.files(path=hcPop2Dir, pattern="*.bed", full.names=T)
hc.bim.pop2 <- list.files(path=hcPop2Dir, pattern="*.bim", full.names=T)
hc.fam.pop2 <- list.files(path=hcPop2Dir, pattern="*.fam", full.names=T)
hc.list.pop2 <- c()
hc.ld.calc.pop2 <- list()
hc.pair.df.pop2 <- list()
hc.diff.r2.pop2 <- list()
hc.diff.dp.pop2 <- list()
message("\n-------HIGH CONFIDENCE PATHWAY SNPS -- POPULATION 2 -------\n")
for (i in 1:length(hc.bed.pop2)) {
# Convert PLINK files to snpStats input format
# Output object is a list with 3 elements ($genotypes, $fam, $map)
# NOTE: order is important!
hc.list.pop2[[i]] <- read.plink(hc.bed.pop2[i], hc.bim.pop2[i],
hc.fam.pop2[i])
# Calculate linkage disequilbrium statistics (R squared)
# NOTE: argument 'depth' specifies the max. separation b/w pairs of SNPs
# to be considered, so that depth=1 would specify calculation of LD b/w
# immediately adjacent SNPs. For our purposes we want to determine LD
# b/w all SNPs in each pathway despite their distance from each other,
# so we specify depth as ((number of SNPs)-1)
cat(sprintf("Calculating LD statistics for SNPs in %s pathway...",
basename(file_path_sans_ext(hc.bed.pop2[i]))))
hc.ld.calc.pop2[[i]] <- ld(hc.list.pop2[[i]]$genotypes,
stats=c("D.prime", "R.squared"),
depth=ncol(hc.list.pop2[[i]]$genotypes)-1)
# Create dataframe containing pairwise distance calculations for each
# LD SNP-SNP pair
snp.map <- hc.list.pop2[[i]]$map
# Turn each LD matrix into a data frame
hc.r2 <- as.matrix(hc.ld.calc.pop2[[i]]$R.squared) #convert sparseMatrix to regular matrix
hc.r2 <- subset(melt(hc.r2), value!=0) #for all non-zero values
colnames(hc.r2)[3] <- "R.squared"
hc.dp <- as.matrix(hc.ld.calc.pop2[[i]]$D.prime)
hc.dp <- subset(melt(hc.dp), value!=0)
colnames(hc.dp)[3] <- "D.prime"
# Combine R2 and Dprime stats for each SNP-SNP pair
hc.all.stats <- merge(hc.r2, hc.dp, by=c("Var1", "Var2"))
# Generate pariwise distance table for each SNP-SNP pair
colnames(hc.all.stats)[1] <- "snp.name"
snp.map <- subset(snp.map, select=c("snp.name", "chromosome", "position"))
hc.pair <- merge(snp.map, hc.all.stats, by="snp.name")
colnames(hc.pair)[1:4] <- c("snp_1", "chr_1", "pos_1", "snp.name")
hc.pair <- merge(snp.map, hc.pair, by="snp.name")
colnames(hc.pair) <- c("snp_1", "chr_1", "pos_1", "snp_2",
"chr_2", "pos_2", "R.squared", "D.prime")
hc.pair$dist <- abs(hc.pair$pos_1 - hc.pair$pos_2)
hc.pair.df.pop2[[i]] <- hc.pair %>% mutate(R.squared=round(R.squared, 3))
hc.pair.df.pop2[[i]] <- hc.pair %>% mutate(D.prime=round(D.prime, 3))
hc.diff.r2.pop2[[i]] <- filter(hc.pair.df.pop2[[i]], chr_1 != chr_2) %>%
select(R.squared) %>% unlist
hc.diff.dp.pop2[[i]] <- filter(hc.pair.df.pop2[[i]], chr_1 != chr_2) %>%
select(D.prime) %>% unlist
cat(" done.\n")
}
hc.all.pop1 <- do.call("rbind", hc.pair.df.pop1)
hc.diff.num.pop1 <- sapply(hc.diff.r2.pop1, length) #sample size per pathway
hc.diff.r2.mean.pop1 <- sapply(hc.diff.r2.pop1, mean) #mean r2 per pathway
hc.diff.dp.mean.pop1 <- sapply(hc.diff.dp.pop1, mean) #mean dprime per pathway
hc.all.pop2 <- do.call("rbind", hc.pair.df.pop2)
hc.diff.num.pop2 <- sapply(hc.diff.r2.pop2, length)
hc.diff.r2.mean.pop2 <- sapply(hc.diff.r2.pop2, mean)
hc.diff.dp.mean.pop2 <- sapply(hc.diff.dp.pop2, mean)
#remove original data objects to clear memory
rm(hc.list.pop1, hc.list.pop2, hc.ld.calc.pop1, hc.ld.calc.pop2)
#============================================================================#
# Permute random samples from original PLINK genotype data and calculate LD
message("\n-------RANDOMLY SELECTED SNPS-------\n")
rep.num <- 500L #how many permutations to run
sample.num <- 400L #number of SNPs to pick for each permutation
# Large vector, time intensive depending on size of file
start.time <- Sys.time()
pop1 <- read.plink(plinkPop1F)
end.time <- Sys.time()
time.taken <- end.time - start.time
print(time.taken) #print time taken to read in PLINK files
null.ld.calc.pop1 <- list()
null.pair.df.pop1 <- list()
null.diff.r2.pop1 <- list()
null.diff.dp.pop1 <- list()
for (i in 1:rep.num) {
cat(sprintf("Calculating LD within random sample matrix %i...", i))
# Generating LD stats for 500 permutations of 400 SNPs each
# later will plot mean null r2 / dprime distribution per perm via ggplot
null.ld.calc.pop1[[i]] <- ld(pop1$genotypes[, sample(ncol(pop1$genotypes),
sample.num, replace=F)],
stats=c("D.prime", "R.squared"),
depth=sample.num-1)
# Create dataframe containing pairwise distance calculations for each
# LD SNP pair
snp.map <- pop1$map
# Turn each LD matrix into a data frame
null.r2 <- as.matrix(null.ld.calc.pop1[[i]]$R.squared) #convert sparseMatrix to regular matrix
null.r2 <- subset(melt(null.r2), value!=0) #melt df and remove '0's
colnames(null.r2)[3] <- "R.squared"
null.dp <- as.matrix(null.ld.calc.pop1[[i]]$D.prime)
null.dp <- subset(melt(null.dp), value!=0)
colnames(null.dp)[3] <- "D.prime"
# Combine R2 and Dprime stats for each SNP-SNP pair
null.stats <- merge(null.r2, null.dp, by=c("Var1", "Var2"))
# Generate pariwise distance table for each SNP-SNP pair
colnames(null.stats)[1] <- "snp.name"
snp.map <- subset(snp.map, select=c("snp.name", "chromosome", "position"))
null.pair <- merge(snp.map, null.stats, by="snp.name")
colnames(null.pair)[1:4] <- c("snp_1", "chr_1", "pos_1", "snp.name")
null.pair <- merge(snp.map, null.pair, by="snp.name")
colnames(null.pair) <- c("snp_1", "chr_1", "pos_1", "snp_2",
"chr_2", "pos_2", "R.squared", "D.prime")
# Calculate distance between SNP pairs
null.pair$dist <- abs(null.pair$pos_1 - null.pair$pos_2)
# Round r2 and Dprime values to 3 decimal points
null.pair.df.pop1[[i]] <- null.pair %>% mutate(R.squared=round(R.squared, 3))
null.pair.df.pop1[[i]] <- null.pair %>% mutate(D.prime=round(D.prime, 3))
# Used to build null distruibution of mean R2 / Dprime for SNP-SNP pairs on
# different chromosomes per sample 'pathway'
null.diff.r2.pop1[[i]] <- filter(null.pair.df.pop1[[i]], chr_1 != chr_2) %>%
select(R.squared) %>% unlist
null.diff.dp.pop1[[i]] <- filter(null.pair.df.pop1[[i]], chr_1 != chr_2) %>%
select(D.prime) %>% unlist
cat(" done.\n")
}
start.time <- Sys.time()
pop2 <- read.plink(plinkPop2F)
end.time <- Sys.time()
time.taken <- end.time - start.time
print(time.taken) #print time taken to read in PLINK files
null.ld.calc.pop2 <- list()
null.pair.df.pop2 <- list()
null.diff.r2.pop2 <- list()
null.diff.dp.pop2 <- list()
for (i in 1:rep.num) {
cat(sprintf("Calculating LD within random sample matrix %i...", i))
# Generating LD stats for 500 permutations of 400 SNPs each
# later will plot mean null r2 / dprime distribution per perm via ggplot
null.ld.calc.pop2[[i]] <- ld(pop2$genotypes[, sample(ncol(pop2$genotypes),
sample.num, replace=F)],
stats=c("D.prime", "R.squared"),
depth=sample.num-1)
# Create dataframe containing pairwise distance calculations for each
# LD SNP pair
snp.map <- pop2$map
# Turn each LD matrix into a data frame
null.r2 <- as.matrix(null.ld.calc.pop2[[i]]$R.squared) #convert sparseMatrix to regular matrix
null.r2 <- subset(melt(null.r2), value!=0) #melt df and remove '0's
colnames(null.r2)[3] <- "R.squared"
null.dp <- as.matrix(null.ld.calc.pop2[[i]]$D.prime)
null.dp <- subset(melt(null.dp), value!=0)
colnames(null.dp)[3] <- "D.prime"
# Combine R2 and Dprime stats for each SNP-SNP pair
null.stats <- merge(null.r2, null.dp, by=c("Var1", "Var2"))
# Generate pariwise distance table for each SNP-SNP pair
colnames(null.stats)[1] <- "snp.name"
snp.map <- subset(snp.map, select=c("snp.name", "chromosome", "position"))
null.pair <- merge(snp.map, null.stats, by="snp.name")
colnames(null.pair)[1:4] <- c("snp_1", "chr_1", "pos_1", "snp.name")
null.pair <- merge(snp.map, null.pair, by="snp.name")
colnames(null.pair) <- c("snp_1", "chr_1", "pos_1", "snp_2",
"chr_2", "pos_2", "R.squared", "D.prime")
# Calculate distance between SNP pairs
null.pair$dist <- abs(null.pair$pos_1 - null.pair$pos_2)
# Round r2 and Dprime values to 3 decimal points
null.pair.df.pop2[[i]] <- null.pair %>% mutate(R.squared=round(R.squared, 3))
null.pair.df.pop2[[i]] <- null.pair %>% mutate(D.prime=round(D.prime, 3))
# Used to build null distruibution of mean R2 / Dprime for SNP-SNP pairs on
# different chromosomes per sample 'pathway'
null.diff.r2.pop2[[i]] <- filter(null.pair.df.pop2[[i]], chr_1 != chr_2) %>%
select(R.squared) %>% unlist
null.diff.dp.pop2[[i]] <- filter(null.pair.df.pop2[[i]], chr_1 != chr_2) %>%
select(D.prime) %>% unlist
cat(" done.\n")
}
#null.all <- do.call("rbind", null.pairwise.df)
null.diff.num.pop1 <- sapply(null.diff.r2.pop1, length)
null.diff.r2.mean.pop1 <- sapply(null.diff.r2.pop1, mean)
null.diff.dp.mean.pop1 <- sapply(null.diff.dp.pop1, mean)
null.diff.num.pop2 <- sapply(null.diff.r2.pop2, length)
null.diff.r2.mean.pop2 <- sapply(null.diff.r2.pop2, mean)
null.diff.dp.mean.pop2 <- sapply(null.diff.dp.pop2, mean)
rm(pop1, pop2, null.ld.calc.pop1, null.ld.calc.pop2)
#============================================================================#
## PLOT STATS
message("\n-------PLOTS-------\n")
cat("Linkage disequilbrium statistic plots...")
# Set variables and other functions
title <- paste("Degree of co-selection per interchromosomal SNP-SNP",
"\ninteraction within the high-confidence pathways",
"\nvs. randomly selected SNP groups")
r2.axis.title <- bquote("Pairwise LD value (mean " *r^2*" per pathway)")
dp.axis.title <- bquote("Pairwise LD value (mean D' per pathway)")
## for use with stat_summary(fun.data=box.style); allows white median line to
## appear after colouring and filling boxplots
box.style <- function(x){
return(c(y=median(x), ymin=median(x), ymax=median(x)))
}
## for use with stat.summary(fun.data=give.n); displays sample size (N)
## courtesy of Bangyou at Stack Overflow
give.n <- function(x){
return(c(y=median(x)*1.50, label=length(x)))
# experiment with the multiplier to find the perfect position
}
## calculate empirical p by quantifying all permuted mean r2 values greater
## than the real mean r2 values, divided by the total number of replicates
calc.p <- function(null, real){
return( (length(which(null > mean(real)))+1) / (length(null)+1) )
}
#################### PLOT 1: Null distribution vs real #######################
# Plotting mean R2 value for random SNP-SNP pairs on diff chromosome
# against real mean R2 value for high-conf SNPs
# interchromosomal SNP pairs used as proxy for co-selection/genetic ixns
real.pop1 <- data.frame(R.squared=hc.diff.r2.mean.pop1,
D.prime=hc.diff.dp.mean.pop1,
pathway.group="highconf")
null.pop1 <- data.frame(R.squared=null.diff.r2.mean.pop1,
D.prime=null.diff.dp.mean.pop1,
pathway.group="rand")
dist.dat.pop1 <- rbind(real.pop1, null.pop1)
mean.dat.pop1 <- ddply(dist.dat.pop1, "pathway.group", summarise,
R.squared.mean=mean(R.squared),
D.prime.mean=mean(D.prime))
####
real.pop2 <- data.frame(R.squared=hc.diff.r2.mean.pop2,
D.prime=hc.diff.dp.mean.pop2,
pathway.group="highconf")
null.pop2 <- data.frame(R.squared=null.diff.r2.mean.pop2,
D.prime=null.diff.dp.mean.pop2,
pathway.group="rand")
dist.dat.pop2 <- rbind(real.pop2, null.pop1)
mean.dat.pop2 <- ddply(dist.dat.pop2, "pathway.group", summarise,
R.squared.mean=mean(R.squared),
D.prime.mean=mean(D.prime))
ggplot(dist.dat.pop1, aes(x=R.squared, colour=pathway.group,
fill=pathway.group)) +
geom_density(alpha=0.3) +
#geom_histogram(bins=20, alpha=0.5, position="identity") +
geom_vline(data=mean.dat.pop1, aes(xintercept=R.squared.mean,
colour=pathway.group),
linetype="dashed", size=1) +
scale_x_continuous(r2.axis.title) +
scale_y_continuous("Density") +
ggtitle(title) +
theme_set(theme_minimal()) +
theme(plot.title=element_text(hjust=0.5),
text=element_text(size=17),
legend.position="top",
legend.title=element_blank(),
panel.grid.major.x=element_blank())
ggsave("dist_nullvreal_r2_ceu.png", width=8, height=7)
perm.p = calc.p(null.diff.r2.mean, hc.diff.r2.mean)
cat(sprintf("P-value for permuted sample vs. real test statistic= %g\n",
perm.p))
############################ PLOT 2: Boxplots ################################
# Boxplot of total LD stat distribution b/w null vs. real
ggplot(dist.dat, aes(x=pathway.group, y=R.squared)) +
geom_boxplot(outlier.colour=NULL,
aes(colour=pathway.group, fill=pathway.group)) +
stat_summary(geom="crossbar", width=0.65, fatten=0, color="white",
fun.data=box.style) +
scale_y_continuous(r2.axis.title) +
ggtitle(title) +
theme_set(theme_minimal()) +
theme(plot.title=element_text(hjust=0.5),
text=element_text(size=17),
legend.position="top",
legend.title=element_blank(),
panel.grid.major.x=element_blank(),
axis.title.x=element_blank()) +
scale_x_discrete(labels=paste("N=", table(dist.dat$pathway.group),
sep=""))
ggsave("boxplot_nullvsreal_r2.png", width=8, height=7.5)
####################### PLOT 3: Boxplot per pathway ##########################
# Boxplot of LD stats per high confidence pathway
hc.r2.df <- melt(hc.diff.r2, value.name="R.squared")
hc.dp.df <- melt(hc.diff.dp, value.name="D.prime")
title <- paste("Degree of co-selection per interchromosomal SNP-SNP",
"\npair within each high-confidence pathway")
axis.title2 <- "# of interchromosomal SNP-SNP pairs per pathway"
ggplot(hc.r2.df, aes(x=factor(L1), y=R.squared,
color="#F8766D", fill="#F8766D")) +
geom_boxplot() +
stat_summary(geom="crossbar", width=0.65, fatten=0, color="white",
fun.data=box.style) +
stat_summary(geom="text", color="white", fun.data=give.n,
position=position_dodge(width=0.75)) +
scale_y_continuous(r2.axis.title) +
scale_x_discrete(axis.title2)+
ggtitle(title) +
theme(axis.text.x=element_text(vjust=0.4, hjust=1)) +
theme_set(theme_minimal()) +
theme(plot.title=element_text(hjust=0.5),
text=element_text(size=17),
legend.position="none",
panel.grid.major.x=element_blank()) +
geom_hline(yintercept=0.1, colour="grey", linetype="dashed", size=1)
ggsave("hc_bars_r2.png", width=11)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.