#' Binary or probabilities prediction
#'
#' @param model the model created with fit function logistic regression
#' @param new_data the new data to be classified
#'
#' @return an instance containing the binary or probability prediction.
#' @export
#'
#' @examples
#' \dontrun{
#' predict(model, new_data, type_pred)
#' }
dgrglm.multiclass.predict <- function(model, new_data){
instance = list()
# CHECK THAT ALL THE VARIABLES OF THE MODEL ARE INCLUDED
cols_modele = model$explicatives
for (current_col in colnames(new_data)){
if(!is.element(current_col, cols_modele)){
print(paste(current_col,"is not part of the variables used to build the model"))
stop("Check the consistency of the new variables with that of the model")
}
}
# ADD THE BIAIS COLUMN
new_data$biais = 1
df_theta = model$df_theta
list_pred_probas <- list()
j <- 1
for (i in colnames(df_theta)){
theta <- df_theta[,i]
PI <- sigmoid(as.matrix(new_data) %*% as.vector(theta))
list_pred_probas[[j]] <- PI
j <- j+1
}
df_pred_probas<- as.data.frame(sapply(list_pred_probas,function(x) x))
colnames(df_pred_probas) <- colnames(df_theta)
instance$probas <- df_pred_probas
class(instance) <- "PredictionMultiClass"
return(instance)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.