# NOTE: This code has been modified from AWS Sagemaker Python:
# https://github.com/aws/sagemaker-python-sdk/blob/master/tests/unit/test_sparkml_serving.py
context("spark ml")
library(sagemaker.core)
library(sagemaker.common)
library(sagemaker.mlcore)
MODEL_DATA = "s3://bucket/model.tar.gz"
ROLE = "myrole"
TRAIN_INSTANCE_TYPE = "ml.c4.xlarge"
REGION = "us-west-2"
BUCKET_NAME = "Some-Bucket"
ENDPOINT = "some-endpoint"
ENDPOINT_DESC = list("EndpointConfigName"= ENDPOINT)
ENDPOINT_CONFIG_DESC = list("ProductionVariants"= list(list("ModelName"= "model-1"), list("ModelName"= "model-2")))
sagemaker_session <- function(){
paws_mock <- Mock$new(name = "PawsCredentials", region_name = REGION)
sms <- Mock$new(
name = "Session",
paws_credentials = paws_mock,
paws_region_name=REGION,
config=NULL,
local_mode=FALSE,
s3 = NULL
)
s3_client <- Mock$new()
s3_client$.call_args("put_object")
s3_client$.call_args("get_object", list(Body = BIN_OBJ))
sagemaker_client <- Mock$new()
describe = list("ModelArtifacts"= list("S3ModelArtifacts"= "s3://m/m.tar.gz"))
describe_compilation = list("ModelArtifacts"= list("S3ModelArtifacts"= "s3://m/model_c5.tar.gz"))
sagemaker_client$.call_args("describe_training_job", describe)
sagemaker_client$.call_args("describe_endpoint", ENDPOINT_DESC)
sagemaker_client$.call_args("describe_endpoint_config", ENDPOINT_CONFIG_DESC)
sagemaker_client$.call_args("list_tags", LIST_TAGS_RESULT)
sms$.call_args("default_bucket", BUCKET_NAME)
sms$.call_args("expand_role", ROLE)
sms$.call_args("train", list(TrainingJobArn = "sagemaker-sparkml-dummy"))
sms$.call_args("create_model", "sagemaker-sparkml")
sms$.call_args("endpoint_from_production_variants", "sagemaker-sparkml-endpoint")
sms$.call_args("logs_for_job")
sms$.call_args("wait_for_job")
sms$.call_args("wait_for_compilation_job", describe_compilation)
sms$.call_args("compile_model")
sms$s3 <- s3_client
sms$sagemaker <- sagemaker_client
return(sms)
}
test_that("test sparkml model", {
sms <- sagemaker_session()
sparkml = SparkMLModel$new(sagemaker_session=sms, model_data=MODEL_DATA, role=ROLE)
expect_equal(sparkml$image_uri, ImageUris$new()$retrieve("sparkml-serving", REGION, version="2.4"))
})
test_that("test auto ml default channel name", {
sms <- sagemaker_session()
sparkml = SparkMLModel$new(sagemaker_session=sms, model_data=MODEL_DATA, role=ROLE)
predictor = sparkml$deploy(1, TRAIN_INSTANCE_TYPE)
expect_true(inherits(predictor, "SparkMLPredictor"))
})
test_that("test auto ml default channel name", {
sms <- sagemaker_session()
sparkml = SparkMLModel$new(sagemaker_session=sms, model_data=MODEL_DATA, role=ROLE)
custom_serializer = Mock$new(name="BaseSerializer")
predictor = sparkml$deploy(1, TRAIN_INSTANCE_TYPE, serializer=custom_serializer)
expect_true(inherits(predictor, "SparkMLPredictor"))
expect_equal(predictor$serializer, custom_serializer)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.