# NOTE: This code has been modified from AWS Sagemaker Python:
# https://github.com/aws/sagemaker-python-sdk/blob/master/tests/unit/test_xgboost.py
context("xgboost")
library(sagemaker.core)
library(sagemaker.common)
library(sagemaker.mlcore)
ENDPOINT_DESC = list("EndpointConfigName"= "test-endpoint")
ENDPOINT_CONFIG_DESC = list("ProductionVariants"= list(list("ModelName"= "model-1"), list("ModelName"= "model-2")))
LIST_TAGS_RESULT = list("Tags"= list(list("Key"= "TagtestKey", "Value"= "TagtestValue")))
EXPERIMENT_CONFIG = list(
"ExperimentName"= "exp",
"TrialName"= "trial",
"TrialComponentDisplayName"= "tc")
DATA_DIR = file.path(getwd(), "data")
SCRIPT_PATH = file.path(DATA_DIR, "dummy_script.py")
SERVING_SCRIPT_FILE = "another_dummy_script.py"
TIMESTAMP = "2017-11-06-14:14:15.672"
TIME = 1507167947
BUCKET_NAME = "mybucket"
INSTANCE_COUNT = 1
DIST_INSTANCE_COUNT = 2
INSTANCE_TYPE = "ml.c4.4xlarge"
GPU_INSTANCE_TYPE = "ml.p2.xlarge"
PYTHON_VERSION = "py3"
IMAGE_URI = "sagemaker-xgboost"
JOB_NAME = sprintf("%s-%s", IMAGE_URI, TIMESTAMP)
IMAGE_URI_FORMAT_STRING = "246618743249.dkr.ecr.%s.amazonaws.com/%s:%s-%s-%s"
ROLE = "Dummy"
REGION = "us-west-2"
CPU = "ml.c4.xlarge"
xgboost_framework_version ="1.0-1"
.get_full_cpu_image_uri = function(version){
return(sprintf(IMAGE_URI_FORMAT_STRING, REGION, IMAGE_URI, version, "cpu", PYTHON_VERSION))
}
sagemaker_session <- function(){
paws_mock <- Mock$new(name = "PawsCredentials", region_name = REGION)
sms <- Mock$new(
name = "Session",
paws_credentials = paws_mock,
paws_region_name=REGION,
config=NULL,
local_mode=FALSE,
s3 = NULL
)
s3_client <- Mock$new()
s3_client$.call_args("put_object")
s3_client$.call_args("get_object", list(Body = BIN_OBJ))
sagemaker_client <- Mock$new()
describe = list("ModelArtifacts"= list("S3ModelArtifacts"= "s3://m/m.tar.gz"))
describe_compilation = list("ModelArtifacts"= list("S3ModelArtifacts"= "s3://m/model_c5.tar.gz"))
sagemaker_client$.call_args("describe_training_job", describe)
sagemaker_client$.call_args("describe_endpoint", ENDPOINT_DESC)
sagemaker_client$.call_args("describe_endpoint_config", ENDPOINT_CONFIG_DESC)
sagemaker_client$.call_args("list_tags", LIST_TAGS_RESULT)
sms$.call_args("default_bucket", BUCKET_NAME)
sms$.call_args("expand_role", ROLE)
sms$.call_args("train", list(TrainingJobArn = "sagemaker-xgboost-dummy"))
sms$.call_args("create_model", "sagemaker-xgboost")
sms$.call_args("endpoint_from_production_variants", "sagemaker-xgboost-endpoint")
sms$.call_args("logs_for_job")
sms$.call_args("wait_for_job")
sms$.call_args("wait_for_compilation_job", describe_compilation)
sms$.call_args("compile_model")
sms$s3 <- s3_client
sms$sagemaker <- sagemaker_client
return(sms)
}
test_that("test create model", {
source_dir = "s3://mybucket/source"
sms <- sagemaker_session()
xgboost_model = XGBoostModel$new(
model_data=source_dir,
role=ROLE,
sagemaker_session=sms,
entry_point=SCRIPT_PATH,
framework_version=xgboost_framework_version)
default_image_uri = .get_full_cpu_image_uri(xgboost_framework_version)
model_values = xgboost_model$prepare_container_def(CPU)
expect_equal(model_values$Image, default_image_uri)
})
test_that("test create model from estimator",{
container_log_level = 'INFO'
source_dir = "s3://mybucket/source"
base_job_name = "job"
sms <- sagemaker_session()
xgboost = XGBoost$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_type=INSTANCE_TYPE,
instance_count=1,
framework_version=xgboost_framework_version,
container_log_level=container_log_level,
py_version=PYTHON_VERSION,
base_job_name=base_job_name,
source_dir=source_dir
)
xgboost$fit(inputs="s3://mybucket/train", job_name="new_name")
xgboost$uploaded_code
model_name = "model_name"
model = xgboost$create_model()
expect_equal(model$sagemaker_session, sms)
expect_equal(model$framework_version, xgboost_framework_version)
expect_equal(model$py_version, xgboost$py_version)
expect_equal(model$entry_point, basename(SCRIPT_PATH))
expect_equal(model$role, ROLE)
expect_equal(model$container_log_level, "20")
expect_equal(model$source_dir, source_dir)
expect_null(model$vpc_config)
})
test_that("test deploy model", {
skip_if_no_python()
skip_if_no_numpy()
sms <- sagemaker_session()
model = XGBoostModel$new(
"s3://some/data.tar.gz",
role=ROLE,
framework_version=xgboost_framework_version,
entry_point=SCRIPT_PATH,
sagemaker_session=sms)
predictor = model$deploy(1, CPU)
expect_true(inherits(predictor, "XGBoostPredictor"))
})
test_that("test training image uri", {
sms <- sagemaker_session()
xgboost = XGBoost$new(
entry_point=SCRIPT_PATH,
role=ROLE,
framework_version=xgboost_framework_version,
sagemaker_session=sms,
instance_type=INSTANCE_TYPE,
instance_count=1,
py_version=PYTHON_VERSION)
default_image_uri = .get_full_cpu_image_uri(xgboost_framework_version)
model_uri = xgboost$training_image_uri()
expect_equal(default_image_uri, model_uri)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.