#' @title MSA Reliability Assessment with GUIDANCE2
#' @description Calculate MSA reliability scores with GUIDANCE2 (Sela et al.
#' 2015).
#' @param sequences An object of class \code{\link{DNAbin}} or
#' \code{\link{AAbin}} containing unaligned sequences of DNA or amino acids.
#' @param bootstrap An integer giving the number of alternative MSAs to be
#' computed.
#' @param method A character string containing further arguments passed to
#' MAFFT; default is \code{"auto"}.
#' @param n.coopt An integer giving the number of sampled co-optimal MSAa.
#' @param n.part XXX.
#' @param msa.exec A character string giving the path to the executable of the
#' alignment program (e.g. \code{/usr/local/bin/mafft}); possible programs are
#' \code{MAFFT}, \code{MUSCLE}, \code{ClustalO}, and \code{ClustalW}.
#' @param ncore An integer specifying the number of cores; default = 1 (i.e.
#' serial execution); \code{"auto"} can be used for automated usage of all
#' detected cores.
#' @param zip.file A character string giving the name of zip-compressed file,
#' which contains the alternative MSAs. If left empty (default), the
#' alternative MSA will not be stored and cannot be assessed by the user.
#' @return An object of class \code{\linkS4class{guidanceDNA}} or
#' \code{\linkS4class{guidanceAA}}.
#' @details Calculates column confidence (and other scors) by comparing
#' alternative MSAs generated by the GUIDANCE with varying gap opening panelty
#' and the HoT methodology. First 100 alternative MSAs (with BP guide trees)
#' with varying gap opening panelty are produced, then for each n (default =
#' 4) co-optimal alignments are produced using HoT. The basic comparison
#' between the BP MSAs and a reference MSA is if column residue pairs are
#' identically aligned in all alternative MSAs compared with the base MSA (see
#' \code{compareMSAs}).
#'
#' @references Felsenstein, J. 1985. Confidence limits on phylogenies: an
#' approach using the bootstrap. \emph{Evolution} \strong{39}:783--791.
#' @references Landan, G. and D. Graur. 2008. Local reliability measures from
#' sets of co-optimal multiple sequence alignments. \emph{Pacific Symposium on
#' Biocomputing} \strong{13}:15--24.
#' @references Penn, O., E. Privman, G. Landan, D. Graur, and T. Pupko. 2010. An
#' alignment confidence score capturing robustness to guide tree uncertainty.
#' \emph{Molecular Biology and Evolution} \strong{27}:1759--1767.
#' @references Sela et al. 2015. GUIDANCE2: accurate detection of unreliable
#' alignment regions accounting for the uncertainty of multiple parameters.
#' \emph{Nucleic Acids Research} \strong{43}:W7--W14
#' @author Franz-Sebastian Krah
#' @seealso \code{\link{guidance}}, \code{\link{HoT}}
#' @import adephylo
#' @importFrom ips mafft
#' @import doSNOW
#' @import foreach
#' @importFrom parallel makeCluster
#' @import pbmcapply
#' @import plyr
#' @importFrom phangorn as.phyDat dist.ml
#' @importFrom stringr str_extract
#' @export
guidance2 <- function(sequences,
bootstrap = 100,
method = "auto",
n.coopt = 4,
n.part = "auto",
msa.exec = "/usr/local/bin/mafft",
ncore = 1,
store_msas = FALSE,
zip.file){
##############################################
## SOME CHECKS
##############################################
if (!inherits(sequences, c("DNAbin", "AAbin")))
stop("sequences not of class DNAbin or AAbin (ape)")
## Look up MSA program specified
msa_program <- str_extract(msa.exec, "mafft|muscle|clustal\\w")
## Check for MSA program
## ---------------------
if (missing(msa.exec)){
os <- Sys.info()[1]
if (msa_program == "mafft") {
msa.exec <- switch(os, Linux = "mafft", Darwin = "mafft",
Windows = "mafft.bat")
}
if (msa_program == "muscle") {
msa.exec <- switch(os, Linux = "muscle", Darwin = "muscle",
Windows = "muscle3.8.31_i86win32.exe")
}
if (msa_program == "clustalw2") {
msa.exec <- switch(os, Linux = "clustalw", Darwin = "clustalw2",
Windows = "clustalw2.exe")
}
}
out <- system(paste(msa.exec, "--v"), ignore.stdout = TRUE, ignore.stderr = TRUE)
if (out == 127)
stop("please provide exec path or install MSA program in root \n
i.e. in Unix: '/usr/local/bin/mafft'")
## Number of cores
if (ncore == "auto") ncore <- detectCores(all.tests = FALSE, logical = TRUE)
## If more than 200 species intermediate results are processed via files
int_file <- ifelse(length(sequences) > 200, TRUE, FALSE)
##############################################
## PART I
##############################################
## BASE and PERTUBATED MSAs
##############################################
## Generate base alignment
## -----------------------
cat("Generating the base alignment\n")
mafft_method <- ifelse(msa_program == "mafft",
", method = method, thread = ncore", "")
base.msa <- paste0(msa_program, "(",
"x = sequences, exec = msa.exec",
mafft_method, ")")
base.msa <- eval(parse(text = base.msa))
## Compute NJ guide trees
## ----------------------
cat("Generating NJ guide trees\n")
pb <- txtProgressBar(max = bootstrap, style = 3)
progress <- function(n) setTxtProgressBar(pb, n)
opts <- list(progress = progress)
cl <- makeCluster(ncore)
registerDoSNOW(cl)
nj_guidetrees <- foreach(i = 1:bootstrap,
.options.snow = opts,
.packages = "phangorn",
.export = 'msaBP_nj_tree') %dopar% {
msaBP_nj_tree(base.msa, outgroup = "auto")
}
stopCluster(cl)
close(pb)
## Alignment of MSA with NJ guide trees bases on pertubated base MSA
## -----------------------------------------------------------------
cat("Alignment of alternative MSAs using NJ guide trees (GUIDANCE)\n")
## Prepare TEMP files for all outputs (GUIDANCE + HoT)
if (int_file){
msa_out <- vector(length = (bootstrap + (bootstrap*n.coopt)))
for (i in 1:bootstrap)
msa_out[i] <- tempfile(pattern = "mafft", tmpdir = tempdir(), fileext = ".fas")
for (i in 1:(bootstrap * n.coopt))
msa_out[i + bootstrap] <- tempfile(pattern = "HoT", tmpdir = tempdir(), fileext = ".fas")
# unlink(msa_out[file.exists(msa_out)])
}
## Align perturbated MSAs (GUIDANCE)
pb <- txtProgressBar(max = bootstrap, style = 3)
progress <- function(n) setTxtProgressBar(pb, n)
opts <- list(progress = progress)
cl <- makeCluster(ncore)
registerDoSNOW(cl)
intfile <- ifelse(int_file, ", file = msa_out[i]", "")
switch(msa_program,
mafft = {
FUN <- function(i) {
paste0("mafft(x = sequences, gt = nj_guidetrees[[", i, "]],
exec = msa.exec, method = method,
op = runif(1,0,5))", intfile)
}},
muscle = {
FUN <- function(i) {
paste0("muscle2(x = sequences, gt = nj_guidetrees[[,", i, ", ]],
exec = msa.exec, MoreArgs = paste('-gapopen ', format(runif(1, -400, -10), digits = 0)",
intfile,")")
}},
clustalw2 = {
FUN <- function(i) {
paste0("clustalw2(x = sequences, gt = nj_guidetrees[[,", i, "]],
exec = msa.exec, file = msa_out[i],
MoreArgs = paste('-PAIRGAP=', format(runif(1, 1, 9), digits = 0), sep =')')",
intfile, ")")
}})
# FUN <- switch(msa_program,
#
# mafft = function(i) paste0("mafft(x = sequences, gt = nj_guidetrees[[", i, "]],
# exec = msa.exec, method = method,
# op = runif(1,0,5))", intfile),
# muscle = function(i) paste0("muscle2(x = sequences, gt = nj_guidetrees[[,", i, ", ]],
# exec = msa.exec, MoreArgs = paste('-gapopen ', format(runif(1, -400, -10), digits = 0)",
# intfile,")"),
# clustalw2 = function(i) paste0("clustalw2(x = sequences, gt = nj_guidetrees[[,", i, "]],
# exec = msa.exec, file = msa_out[i],
# MoreArgs = paste('-PAIRGAP=', format(runif(1, 1, 9), digits = 0), sep =')')",
# intfile, ")"))
msa_out <- foreach(i = 1:bootstrap, .packages = c('ips', 'ape'),
.export = c("sequences", "nj_guidetrees", "msa.exec", "method"),
.options.snow = opts) %dopar% {
eval(parse(text = FUN(i)))
}
stopCluster(cl)
close(pb)
mafft_created <- list.files(getwd(),
full.names = TRUE)[grep("tree.mafft", list.files(getwd()))]
if (length(mafft_created)){
file.remove(mafft_created)
}
##############################################
## PART III
##############################################
## Generate co-optimal alignments with HoT
##############################################
cat(paste("Sampling", n.coopt, "co-optimal MSAs (HoT) for each alternative MSA\n"))
# predifined file allocation
start <- seq(1, n.coopt * bootstrap, n.coopt)
end <- seq(n.coopt, n.coopt * bootstrap, n.coopt)
stend <- data.frame(start, end)
stend <- stend + bootstrap
## run HoT
## -------
progress <- function(n) setTxtProgressBar(pb, n)
opts <- list(progress = progress)
cl <- makeCluster(ncore)
registerDoSNOW(cl)
FUN <- function(i){
paste0("Hot_GUIDANCE2(msa = msa_out",
ifelse(int_file, "[", "[["), i,
ifelse(int_file, "]", "]]"),
", n.coopt = n.coopt, files = msa_out[stend[" , i,
",1]:stend[" , i, ",2]], int_file = ", int_file,
", raw_seq = sequences, msa.program = msa_program, ",
"method = method, msa.exec = msa.exec)")
}
alt.msa <- foreach(i = 1:bootstrap,
.options.snow = opts,
.packages = c('ips', 'adephylo', 'foreach', 'phangorn'),
.export = c("n.coopt", "sequences", "msa_program",
"method", "msa.exec", "msa_out")) %dopar% {
eval(parse(text = FUN(i)))
}
stopCluster(cl)
close(pb)
## Unlist nested list
if (!int_file){
alt.msa <- foreach(i = 1:length(alt.msa), .combine = c) %do% {
alt.msa[[1]]
}
}
##############################################
## PART IV
##############################################
## Computation of GUIDANCE 2 scores
##############################################
cat("\nCalculating GUIDANCE2 scores\n")
if (int_file){
dir.create(paste(tempdir(), "alt", sep = "/"))
files_from <- list.files(tempdir(), full.names = TRUE)
files_from <- files_from[grep("\\.fas", files_from)]
files_to <- list.files(tempdir())
files_to <- files_to[grep("\\.fas", files_to)]
files_to <- paste(tempdir(), "alt", files_to, sep = "/")
file.rename(files_from, files_to)
rm(alt.msa)
alt.msa <- paste(tempdir(), "alt", sep = "/")
}
## Run msa_set_score
# switch(score_method,
# "Rcpp" = {
# ## Rcpp functions are called
score <- msa_set_scoreR(ref = base.msa,
alt = alt.msa)
# },
# "SA" = {
# ## msa_set_score from GUIDANCE package is called
# score <- msa_set_scoreSA(ref = base.msa,
# alt = alt.msa, bootstrap = bootstrap,
# exec = msa_set_score.exec)
# }
# )
## Store alternative MSAs in a zip file (optional)
## -----------------------------------------------
if (!missing(zip.file)){
files <- list.files(tempdir())
files <- files[grep("HoT", files)]
for (i in 1:(n.coopt * bootstrap)){
file.rename(paste(tempdir(), files[i], sep = "/"),
paste(tempdir(), paste0("altMSA", i, ".fas"), sep = "/"))}
files <- list.files(tempdir(), full.names = TRUE)
files <- files[grep("altMSA*", files)]
zip(zipfile = zip.file, files = files)
## NOTE: maybe better to use gzfile,
## currently zip creates many weird subfolders
}
## delete temporary files in temporary directory
# unlink(msa_out[file.exists(msa_out)], force = TRUE)
# unlink(list.files(paste(tempdir(), "alt", sep = "/"),
# full.names = TRUE), force = TRUE, recursive = TRUE)
# unlink(tempdir(), force = TRUE) # do not use this, it causes problems
## Prepare and return output
## -------------------------
# if(score_method=="SA"){
# score <- score$residue_pair_score
# }
if (inherits(sequences, "AAbin")){
guidanceAA(base.msa, score, "guidance2")
} else {
guidanceDNA(base.msa, score, "guidance2")
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.