View source: R/combineResults.R
combineResults | R Documentation |
Combine results into a single data.frame for easy post processing
combineResults(
sledRes,
clstScore,
treeListClusters,
peakLocations,
verbose = TRUE
)
sledRes |
sLEDresults from evalDiffCorr() |
clstScore |
cluster summary statistics from from scoreClusters() |
treeListClusters |
epiclustDiscreteListContain from createClusters() |
peakLocations |
GenomeRanges object |
verbose |
show messages |
library(GenomicRanges)
library(EnsDb.Hsapiens.v86)
# load data
data('decorateData')
# load gene locations
ensdb = EnsDb.Hsapiens.v86
# Evaluate hierarchical clsutering
treeList = runOrderedClusteringGenome( simData, simLocation )
# Choose cutoffs and return clusters
treeListClusters = createClusters( treeList, method = "meanClusterSize", meanClusterSize=c( 10, 20) )
# Evaluate strength of correlation for each cluster
clstScore = scoreClusters(treeList, treeListClusters )
# Filter to retain only strong clusters
# If lead eigen value fraction (LEF) > 30% then keep clusters
# LEF is the fraction of variance explained by the first eigen-value
clustInclude = retainClusters( clstScore, "LEF", 0.30 )
# get retained clusters
treeListClusters_filter = filterClusters( treeListClusters, clustInclude)
# collapse redundant clusters
treeListClusters_collapse = collapseClusters( treeListClusters_filter, simLocation, jaccardCutoff=0.9)
# Evaluate Differential Correlation between two subsets of data
sledRes = evalDiffCorr( simData, metadata$Disease, simLocation, treeListClusters_collapse, npermute=c(20, 200, 2000))
# Combine results for each cluster
df_results = combineResults( sledRes, clstScore, treeListClusters, simLocation)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.