evalDiffCorr | R Documentation |
Evaluate Differential Correlation between two subsets of data
evalDiffCorr(
epiSignal,
testVariable,
gRanges,
clustList,
npermute = c(100, 10000, 1e+05),
adj.beta = 0,
rho = 0,
sumabs.seq = 1,
BPPARAM = bpparam(),
method = c("sLED", "Box", "Box.permute", "Steiger.fisher", "Steiger", "Jennrich",
"Factor", "Mann.Whitney", "Kruskal.Wallis", "Cai.max", "Chang.maxBoot", "LC.U",
"WL.randProj", "Schott.Frob", "Delaneau", "deltaSLE"),
method.corr = c("pearson", "kendall", "spearman")
)
## S4 method for signature 'EList,ANY,GRanges,list'
evalDiffCorr(
epiSignal,
testVariable,
gRanges,
clustList,
npermute = c(100, 10000, 1e+05),
adj.beta = 0,
rho = 0,
sumabs.seq = 1,
BPPARAM = bpparam(),
method = c("sLED", "Box", "Box.permute", "Steiger.fisher", "Steiger", "Jennrich",
"Factor", "Mann.Whitney", "Kruskal.Wallis", "Cai.max", "Chang.maxBoot", "LC.U",
"WL.randProj", "Schott.Frob", "Delaneau", "deltaSLE"),
method.corr = c("pearson", "kendall", "spearman")
)
## S4 method for signature 'matrix,ANY,GRanges,list'
evalDiffCorr(
epiSignal,
testVariable,
gRanges,
clustList,
npermute = c(100, 10000, 1e+05),
adj.beta = 0,
rho = 0,
sumabs.seq = 1,
BPPARAM = bpparam(),
method = c("sLED", "Box", "Box.permute", "Steiger.fisher", "Steiger", "Jennrich",
"Factor", "Mann.Whitney", "Kruskal.Wallis", "Cai.max", "Chang.maxBoot", "LC.U",
"WL.randProj", "Schott.Frob", "Delaneau", "deltaSLE"),
method.corr = c("pearson", "kendall", "spearman")
)
## S4 method for signature 'data.frame,ANY,GRanges,list'
evalDiffCorr(
epiSignal,
testVariable,
gRanges,
clustList,
npermute = c(100, 10000, 1e+05),
adj.beta = 0,
rho = 0,
sumabs.seq = 1,
BPPARAM = bpparam(),
method = c("sLED", "Box", "Box.permute", "Steiger.fisher", "Steiger", "Jennrich",
"Factor", "Mann.Whitney", "Kruskal.Wallis", "Cai.max", "Chang.maxBoot", "LC.U",
"WL.randProj", "Schott.Frob", "Delaneau", "deltaSLE"),
method.corr = c("pearson", "kendall", "spearman")
)
epiSignal |
matrix or EList of epigentic signal. Rows are features and columns are samples |
testVariable |
factor indicating two subsets of the samples to compare |
gRanges |
GenomciRanges corresponding to the rows of epiSignal |
clustList |
list of cluster assignments |
npermute |
array of two entries with min and max number of permutations |
adj.beta |
parameter for sLED |
rho |
a large positive constant such that A(X)-A(Y)+diag(rep(rho,p)) is positive definite. Where p is the number of features |
sumabs.seq |
sparsity parameter |
BPPARAM |
parameters for parallel evaluation |
method |
"sLED", "Box", "Box.permute", "Steiger.fisher", "Steiger", "Jennrich", "Factor", "Mann.Whitney", "Kruskal.Wallis", "Cai.max", "Chang.maxBoot", "LC.U", "WL.randProj", "Schott.Frob", "Delaneau", "deltaSLE" |
method.corr |
Specify type of correlation: "pearson", "kendall", "spearman" |
Correlation sturucture between two subsets of the data is evaluated with sparse-Leading-Eigenvalue-Driven (sLED) test:
Zhu, Lingxue, Jing Lei, Bernie Devlin, and Kathryn Roeder. 2017. Testing high-dimensional covariance matrices, with application to detecting schizophrenia risk genes. Annals of Applied Statistics. 11:3 1810-1831. doi:10.1214/17-AOAS1062
list of result by chromosome and clustList
library(GenomicRanges)
library(EnsDb.Hsapiens.v86)
# load data
data('decorateData')
# load gene locations
ensdb = EnsDb.Hsapiens.v86
# Evaluate hierarchical clsutering
treeList = runOrderedClusteringGenome( simData, simLocation )
# Choose cutoffs and return clusters
treeListClusters = createClusters( treeList, method = "meanClusterSize", meanClusterSize=c( 10, 20) )
# Plot correlations and clusters in region defined by query
query = range(simLocation)
# Plot clusters
plotDecorate( ensdb, treeList, treeListClusters, simLocation, query)
# Evaluate Differential Correlation between two subsets of data
sledRes = evalDiffCorr( simData, metadata$Disease, simLocation, treeListClusters, npermute=c(20, 200, 2000))
# get summary of results
df = summary( sledRes )
# print results
head(df)
# extract peak ID's from most significant cluster
peakIDs = getFeaturesInCluster( treeListClusters, df$chrom[1], df$cluster[1], "20")
# plot comparison of correlation matrices for peaks in peakIDs
# where data is subset by metadata$Disease
main = paste0(df$chrom[1], ': cluster ', df$cluster[1])
plotCompareCorr( simData, peakIDs, metadata$Disease) + ggtitle(main)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.