View source: R/random_statistics.R
runPermutedData | R Documentation |
Run hierarchical clustering permuting features to get statistics under the null
runPermutedData(
X,
gr,
method = c("adjclust", "hclustgeo"),
quiet = FALSE,
alpha = 0.5,
adjacentCount = 500,
setNANtoZero = FALSE,
method.corr = c("pearson", "spearman"),
meanClusterSize = c(5, 10)
)
X |
data matrix were *rows* are features in sequential order |
gr |
GenomicRanges object with entries corresponding to the *rows* of X |
method |
'adjclust': adjacency constrained clustering. 'hclustgeo': incorporate data correlation and distance in bp |
quiet |
suppress messages |
alpha |
use by 'hclustgeo': mixture parameter weighing correlations (alpha=0) versus chromosome distances (alpha=1) |
adjacentCount |
used by 'adjclust': number of adjacent entries to compute correlation against |
setNANtoZero |
replace NAN correlation values with a zero |
method.corr |
Specify type of correlation: "pearson", "kendall", "spearman" |
meanClusterSize |
select target mean cluster size. Can be an array of values |
list of clusterScores and cutoff values at 5
library(GenomicRanges)
# load data
data('decorateData')
# First, analysis of original data
# Evaluate hierarchical clustering
treeList = runOrderedClusteringGenome( simData, simLocation )
# Choose cutoffs and return clusters
treeListClusters = createClusters( treeList, method='meanClusterSize', meanClusterSize=c(5, 10) )
# Evaluate score for each cluster
clstScore = scoreClusters(treeList, treeListClusters )
# Then, analysis of permuted data
# Evaluate hierarchical clustering
res = runPermutedData( simData, simLocation, meanClusterSize=c(5, 10) )
# LEF values for permuted data at 5% false positive rate
res$cutoffs$LEF
# Retain clusters that pass this criteria
clustInclude = retainClusters( clstScore, "LEF", res$cutoffs$LEF )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.