#' Add Module Scores to an ArchRProject
#'
#' This function calculates a module score from a set of features across all cells. This allows for
#' grouping of multiple features together into a single quantitative measurement. Currently, this
#' function only works for modules derived from the `GeneScoreMatrix`. Each module is added as a
#' new column in `cellColData`
#'
#' @param ArchRProj An `ArchRProject` object.
#' @param useMatrix The name of the matrix to be used for calculation of the module score. See `getAvailableMatrices()` to view available options.
#' @param name The name to be given to the designated module. If `features` is a list, this name will be prepended to the feature set names given in the list as shown below.
#' @param features A list of feature names to be grouped into modules. For example, `list(BScore = c("MS4A1", "CD79A", "CD74"), TScore = c("CD3D", "CD8A", "GZMB", "CCR7", "LEF1"))`.
#' Each named element in this list will be stored as a separate module. The examples given in these parameters would yield two modules called `Module.Bscore` and `Module.Tscore`.
#' If the elements of this list are not named, they will be numbered in order, i.e. `Module1`, `Module2`.
#' @param nBin The number of bins to use to divide all features for identification of signal-matched features for background calculation
#' @param nBgd The number of background features to use for signal normalization.
#' @param seed A number to be used as the seed for random number generation required when sampling cells for the background set. It is recommended
#' to keep track of the seed used so that you can reproduce results downstream.
#' @param threads The number of threads to be used for parallel computing.
#' @param verbose A boolean value that determines whether standard output includes verbose sections.
#' @param logFile The path to a file to be used for logging ArchR output.
#'
#' @examples
#'
#' # Get Test ArchR Project
#' proj <- getTestProject()
#'
#' # Add Module Score
#' proj <- addModuleScore(proj, useMatrix = "GeneScoreMatrix", nBin = 25, nBgd = 25, features = list(TScore = c('CD3D', 'CD3E')))
#'
#' #Check
#' split(proj@cellColData$Module.TScore, proj@cellColData$CellType) %>% lapply(mean) %>% unlist
#' # B M T
#' # -4.352769 -8.438259 9.942678
#'
#' #Get T cell Features
#' features <- getGenes()
#' T <- features[features$symbol %in% c("CD3D", "CD3E")]
#' B <- features[features$symbol %in% c("MS4A1")]
#'
#' # Add Module Score
#' proj <- addModuleScore(proj, useMatrix = "TileMatrix", nBin = 25, nBgd = 25, features = list(TScore = T, BScore = B))
#'
#' #Check
#' split(proj@cellColData$Module.TScore, proj@cellColData$CellType) %>% lapply(mean) %>% unlist
#' # B M T
#' # -0.03866667 -0.05303030 0.10306122
#'
#' split(proj@cellColData$Module.BScore, proj@cellColData$CellType) %>% lapply(mean) %>% unlist
#' # B M T
#' # 0.10000000 -0.03939394 -0.05387755
#'
#' @export
addModuleScore <- function(
ArchRProj = NULL,
useMatrix = NULL,
name = "Module",
features = NULL,
nBin = 25,
nBgd = 100,
seed = 1,
threads = getArchRThreads(),
verbose = TRUE,
logFile = createLogFile("addModuleScore")
){
.validInput(input = ArchRProj, name = "ArchRProj", valid = c("ArchRProj"))
.validInput(input = useMatrix, name = "useMatrix", valid = c("character"))
.validInput(input = name, name = "name", valid = c("character"))
.validInput(input = features, name = "features", valid = c("list"))
.validInput(input = nBin, name = "nBin", valid = c("integer"))
.validInput(input = nBgd, name = "nBgd", valid = c("integer"))
.validInput(input = seed, name = "seed", valid = c("integer","null"))
.validInput(input = threads, name = "threads", valid = c("integer"))
.validInput(input = verbose, name = "verbose", valid = c("boolean"))
.validInput(input = logFile, name = "logFile", valid = c("character", "null"))
if(useMatrix %ni% getAvailableMatrices(ArchRProj)){
stop("useMatrix not in available matrices! See getAvailableMatrices!")
}
if(!is.null(seed)) set.seed(seed)
tstart <- Sys.time()
.startLogging(logFile = logFile)
.logThis(mget(names(formals()),sys.frame(sys.nframe())), "addModuleScore Input-Parameters", logFile=logFile)
#Get Feature DF
featureDF <- ArchR:::.getFeatureDF(head(getArrowFiles(ArchRProj),2), subGroup=useMatrix)
featureDF$Match <- seq_len(nrow(featureDF))
if("name" %in% colnames(featureDF)){
type <- "name"
featureData <- featureDF
featureData$Match <- seq_len(nrow(featureDF))
}else{
if(all(c("start", "end") %in% colnames(featureDF))){
type <- "GRanges"
featureData <- GRanges(
seqnames = featureDF$seqnames,
ranges = IRanges(
start = featureDF$start,
end = featureDF$end
)
)
mcols(featureData)$idx <- featureDF$idx
mcols(featureData)$Match <- seq_len(nrow(featureDF))
mcols(featureData)$name <- paste0(featureDF$seqnames, ":", featureDF$idx)
}else if(c("start") %in% colnames(featureDF)){
type <- "GRanges"
featureData <- GRanges(
seqnames = featureDF$seqnames,
ranges = IRanges(
start = featureDF$start,
width = diff(featureDF$start)[1]
)
)
mcols(featureData)$idx <- featureDF$idx
mcols(featureData)$Match <- seq_len(nrow(featureDF))
mcols(featureData)$name <- paste0(featureDF$seqnames, ":", featureDF$idx)
}else{
stop("Error Unrecognized Feature Type!")
}
}
matrixClass <- h5read(getArrowFiles(ArchRProj)[1], paste0(useMatrix, "/Info/Class"))
if(type == "name"){
if(matrixClass == "Sparse.Assays.Matrix"){
if(!all(unlist(lapply(unlist(features), function(x) grepl(":",x))))){
.logMessage("When accessing features from a matrix of class Sparse.Assays.Matrix it requires seqnames\n(denoted by seqnames:name) specifying to which assay to pull the feature from.\nIf confused, try getFeatures(ArchRProj, useMatrix) to list out available formats for input!", logFile = logFile)
stop("When accessing features from a matrix of class Sparse.Assays.Matrix it requires seqnames\n(denoted by seqnames:name) specifying to which assay to pull the feature from.\nIf confused, try getFeatures(ArchRProj, useMatrix) to list out available formats for input!")
}
}
}
if(type == "name"){
if(is(features[[1]], "GRanges")){
stop("Feature Input is Not A character of names!")
}
#Figure out the index numbers of the selected features within the given matrix
if(grepl(":",unlist(features)[1])){
sname <- stringr::str_split(unlist(features),pattern=":",simplify=TRUE)[,1]
name <- stringr::str_split(unlist(features),pattern=":",simplify=TRUE)[,2]
idx <- lapply(seq_along(name), function(x){
ix <- intersect(
which(tolower(name[x]) == tolower(featureDF$name)),
BiocGenerics::which(tolower(sname[x]) == tolower(featureDF$seqnames))
)
if(length(ix)==0){
.logStop(sprintf("FeatureName (%s) does not exist! See available features using getFeatures()", name[x]), logFile = logFile)
}
ix
})
}else{
idx <- lapply(seq_along(unlist(features)), function(x){
ix <- which(tolower(unlist(features)[x]) == tolower(featureDF$name))[1]
if(length(ix) == 0){
.logStop(sprintf("FeatureName (%s) no regions found overlapping! See available features using getFeatures()", unlist(features)[x]), logFile = logFile)
}
ix
})
}
}else{
if(!is(features[[1]], "GRanges")){
stop("Feature Input is Not A GRanges object!")
}
idx <- lapply(seq_along(unlist(features)), function(x){
#Check
o <- tryCatch({GenomeInfoDb::seqlevelsStyle(features[[x]]) <- "UCSC"}, warning = function(w) 0, error = function(e) 0)
#Overlaps
ix <- which(overlapsAny(featureData, features[[x]], ignore.strand=TRUE))
if(length(ix)==0){
.logStop(sprintf("FeatureName (%s) does not exist! See available features using getFeatures()", unlist(features)[x]), logFile = logFile)
}
ix
})
}
if(is.null(names(features))){
names(features) <- paste0(name, seq_along(features))
}else{
names(features) <- paste0(name, ".", names(features))
}
featuresUse <- featureDF[unlist(idx),]
featuresUse$Module <- Rle(unlist(lapply(seq_along(features), function(z) rep(names(features)[z], length(idx[[z]])))))
#Get average values for all features and then order the features based on their average values
#so that the features can be binned into nBins
rS <- ArchR:::.getRowSums(ArrowFiles = getArrowFiles(ArchRProj), useMatrix = useMatrix)
rS <- rS[order(rS[,3]), ]
if(is(featureData, "GRanges")){
rS$Match <- match(paste0(rS$seqnames, ":", rS$idx), paste0(seqnames(featureData), ":", featureData$idx))
}else{
rS$Match <- match(paste0(rS$seqnames, ":", rS$idx), paste0(featureData$seqnames, ":", featureData$idx))
}
#Determine Bins
rS$Bins <- 0
idx <- which(rS$rowSums > 0)
rS$Bins[idx] <- ceiling(seq_along(idx) / ceiling(length(idx)/nBin))
rS$Bins <- Rle(rS$Bins)
#rS$Bins <- Rle(ggplot2::cut_number(x = rS[,3] + rnorm(length(rS[,3]))/1e30, n = nBin, labels = FALSE, right = FALSE))
#check that the number of selected background features isnt bigger than the size of each bin
if(nBgd > min(rS$Bins@lengths)){
stop("nBgd must be lower than ", min(rS$Bins@lengths), "!")
}
#Match the indicies across the different vectors
idxMatch <- match(paste0(featuresUse$seqnames, ":", featuresUse$idx), paste0(rS$seqnames, ":", rS$idx))
featuresUse$Bins <- as.vector(rS$Bins[idxMatch])
#Make lists
featureList <- split(featuresUse$Match, featuresUse$Module) #feature indicies per module
moduleList <- split(featuresUse$Bins, featuresUse$Module) #bins for each feature per module
binList <- split(rS$Match, rS$Bins) #list of all indicies for each bin
.logThis(nBgd, name = paste0("nBgd"), logFile = logFile)
.logThis(featureList, name = paste0("Feature List"), logFile = logFile)
.logThis(moduleList, name = paste0("Module List"), logFile = logFile)
.logThis(binList, name = paste0("Bin List"), logFile = logFile)
#calculate the module score by normalizing to a background set of features
dfM <- lapply(seq_along(featureList), function(x){
.logDiffTime(paste0("Computing Module ",x, " of ", length(featureList)), tstart, addHeader = FALSE, verbose = verbose, logFile = logFile)
binx <- binList[moduleList[[x]]]
idxFgd <- featureList[[x]]
idxBgd <- unlist(lapply(binx, function(x) sample(x, nBgd)), use.names=FALSE)
m <- ArchR:::.getPartialMatrix(
ArrowFiles = getArrowFiles(ArchRProj),
featureDF = featureDF[c(idxFgd, idxBgd), ],
useMatrix = useMatrix,
cellNames = ArchRProj$cellNames,
threads = threads,
verbose = FALSE,
doSampleCells = FALSE
)
Matrix::colMeans(m[seq_along(idxFgd), ]) - Matrix::colMeans(m[-seq_along(idxFgd), ])
})
if (length(features) > 1) {
dfM <- Reduce("cbind", dfM)
} else {
dfM <- as.data.frame(dfM[[1]], row.names = names(dfM), drop = FALSE)
}
#add the module scores as new columns in cellColData
for(x in seq_len(ncol(dfM))){
ArchRProj <- addCellColData(ArchRProj, data = dfM[,x], name=names(featureList)[x], cells=rownames(dfM), force = TRUE)
}
.logDiffTime("Finished Running addModuleScore", tstart, addHeader = FALSE, verbose = verbose, logFile = logFile)
ArchRProj
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.