#' Anomaly Detection Using Seasonal Hybrid ESD Test
#'
#' A technique for detecting anomalies in seasonal univariate time series where the input is a
#' series of observations.
#'
#' @md
#' @name AnomalyDetectionVec
#' @param x Time series as a column data frame, list, or vector, where the column consists of
#' the observations.
#' @param max_anoms Maximum number of anomalies that S-H-ESD will detect as a percentage of the
#' data.
#' @param direction Directionality of the anomalies to be detected. One of:
#' `pos`, `neg`, `both`.
#' @param alpha The level of statistical significance with which to accept or reject anomalies.
#' @param period Defines the number of observations in a single period, and used during seasonal
#' decomposition.
#' @param only_last Find and report anomalies only within the last period in the time series.
#' @param threshold Only report positive going anoms above the threshold specified. One of:
#' `None`, `med_max`, `p95`, `p99`.
#' @param e_value Add an additional column to the anoms output containing the expected value.
#' @param longterm_period Defines the number of observations for which the trend can be considered
#' flat. The value should be an integer multiple of the number of observations in a single period.
#' This increases anom detection efficacy for time series that are greater than a month.
#' @param verbose Enable debug messages
#' @return The returned value is a list with the following components.
#' @return Data frame containing index, values, and optionally expected values.
#' @references
#' - Vallis, O., Hochenbaum, J. and Kejariwal, A., (2014)
#' "A Novel Technique for Long-Term Anomaly Detection in the Cloud", 6th USENIX, Philadelphia, PA.
#' (<https://www.usenix.org/system/files/conference/hotcloud14/hotcloud14-vallis.pdf>)
#' - Rosner, B., (May 1983), "Percentage Points for a Generalized ESD Many-Outlier
#' Procedure", Technometrics, 25(2), pp. 165-172. (<https://www.jstor.org/stable/1268549>)
#' @examples
#' data(raw_data)
#'
#' ad_vec(raw_data[,2], max_anoms=0.02, period=1440, direction='both')
#'
#' # To detect only the anomalies in the last period, run the following:
#'
#' ad_vec(
#' raw_data[,2], max_anoms=0.02, period=1440, direction='both', only_last=TRUE
#' )
#' @seealso [ad_ts()]
#' @export
AnomalyDetectionVec <- function(x, max_anoms = 0.10, direction = "pos",
alpha = 0.05, period = NULL, only_last = FALSE,
threshold = "None", e_value = FALSE,
longterm_period = NULL, verbose = FALSE) {
# Check for supported inputs types and add timestamps
if (is.data.frame(x) && ncol(x) == 1 && is.numeric(x[[1]])) {
x <- data.frame(timestamp = c(1:length(x[[1]])), count = x[[1]])
} else if (is.vector(x) || is.list(x) && is.numeric(x)) {
x <- data.frame(timestamp = c(1:length(x)), count = x)
} else {
stop("data must be a single data frame, list, or vector that holds numeric values.")
}
# Sanity check all input parameterss
if (max_anoms > .49) {
stop(paste("max_anoms must be less than 50% of the data points (max_anoms =",
round(max_anoms * length(x[[2]]), 0), " data_points =", length(x[[2]]), ")."))
}
if (!direction %in% c("pos", "neg", "both")) {
stop("direction options are: pos | neg | both.")
}
if (!(0.01 <= alpha || alpha <= 0.1)) {
if (verbose) {
message(
"Warning: alpha is the statistical signifigance, and is usually between 0.01 and 0.1"
)
}
}
if (is.null(period)) {
stop("Period must be set to the number of data points in a single period")
}
if (!is.logical(only_last)) {
stop("only_last must be either TRUE or FALSE")
}
if (!threshold %in% c("None", "med_max", "p95", "p99")) {
stop("threshold options are: None | med_max | p95 | p99.")
}
if (!is.logical(e_value)) {
stop("e_value must be either TRUE or FALSE")
}
# -- Main analysis: Perform S-H-ESD
num_obs <- length(x[[2]])
if (max_anoms < 1 / num_obs) max_anoms <- 1 / num_obs
# -- Setup for longterm time series
# If longterm is enabled, break the data into subset data frames and store in all_data,
if (!is.null(longterm_period)) {
all_data <- vector(mode = "list", length = ceiling(length(x[[1]]) / (longterm_period)))
# Subset x into two week chunks
for (j in seq(1, length(x[[1]]), by = longterm_period)) {
start_index <- x[[1]][j]
end_index <- min((start_index + longterm_period - 1), num_obs)
# if there is at least longterm_period left, subset it, otherwise subset last_index - longterm_period
if ((end_index - start_index + 1) == longterm_period) {
all_data[[ceiling(j / (longterm_period))]] <-
x[x[[1]] >= start_index & x[[1]] <= end_index, ]
} else {
all_data[[ceiling(j / (longterm_period))]] <-
x[x[[1]] > (num_obs - longterm_period) & x[[1]] <= num_obs, ]
}
}
} else {
# If longterm is not enabled, then just overwrite all_data list with x as the only item
all_data <- list(x)
}
# Create empty data frames to store all anoms and seasonal+trend component from decomposition
all_anoms <- data.frame(timestamp = numeric(0), count = numeric(0))
seasonal_plus_trend <- data.frame(timestamp = numeric(0), count = numeric(0))
# Detect anomalies on all data (either entire data in one-pass, or in 2 week blocks if longterm=TRUE)
for (i in 1:length(all_data)) {
anomaly_direction <- switch(
direction,
"pos" = data.frame(one_tail = TRUE, upper_tail = TRUE), # upper-tail only (positive going anomalies)
"neg" = data.frame(one_tail = TRUE, upper_tail = FALSE), # lower-tail only (negative going anomalies)
"both" = data.frame(one_tail = FALSE, upper_tail = TRUE)
) # Both tails. Tail direction is not actually used.
# detect_anoms actually performs the anomaly detection and returns the results in a list containing the anomalies
# as well as the decomposed components of the time series for further analysis.
detect_anoms(
all_data[[i]],
k = max_anoms, alpha = alpha,
num_obs_per_period = period,
use_decomp = TRUE, use_esd = FALSE,
one_tail = anomaly_direction$one_tail,
upper_tail = anomaly_direction$upper_tail,
verbose = verbose
) -> s_h_esd_timestamps
# store decomposed components in local variable and overwrite s_h_esd_timestamps to contain only the anom timestamps
data_decomp <- s_h_esd_timestamps$stl
s_h_esd_timestamps <- s_h_esd_timestamps$anoms
# -- Step 3: Use detected anomaly timestamps to extract the actual anomalies (timestamp and value) from the data
if (!is.null(s_h_esd_timestamps)) {
anoms <- all_data[[i]][all_data[[i]][[1]] %in% s_h_esd_timestamps, ]
} else {
anoms <- data.frame(timestamp = numeric(0), count = numeric(0))
}
# Filter the anomalies using one of the thresholding functions if applicable
if (threshold != "None") {
# Calculate daily max values
if (!is.null(longterm_period)) {
periodic_maxs <- tapply(all_data[[i]][[2]], c(0:(longterm_period - 1)) %/% period, FUN = max)
} else {
periodic_maxs <- tapply(all_data[[i]][[2]], c(0:(num_obs - 1)) %/% period, FUN = max)
}
# Calculate the threshold set by the user
if (threshold == "med_max") {
thresh <- stats::median(periodic_maxs)
} else if (threshold == "p95") {
thresh <- stats::quantile(periodic_maxs, .95)
} else if (threshold == "p99") {
thresh <- stats::quantile(periodic_maxs, .99)
}
# Remove any anoms below the threshold
anoms <- anoms[anoms[[2]] >= thresh, ]
}
all_anoms <- rbind(all_anoms, anoms)
seasonal_plus_trend <- rbind(seasonal_plus_trend, data_decomp)
}
# Cleanup potential duplicates
all_anoms <- all_anoms[!duplicated(all_anoms[[1]]), ]
seasonal_plus_trend <- seasonal_plus_trend[!duplicated(seasonal_plus_trend[[1]]), ]
# -- If only_last was set by the user, create subset of the data that represent the most recent period
if (only_last) {
x_subset_single_period <- data.frame(timestamp = x[[1]][(num_obs - period + 1):num_obs],
count = x[[2]][(num_obs - period + 1):num_obs])
# Let's try and show 7 periods prior
past_obs <- period * 7
# If we don't have that much data, then show what we have - the last period
if (num_obs < past_obs) past_obs <- num_obs - period
x_subset_previous <-
data.frame(timestamp = x[[1]][(num_obs - past_obs + 1):(num_obs - period + 1)],
count = x[[2]][(num_obs - past_obs + 1):(num_obs - period + 1)])
all_anoms <- all_anoms[all_anoms[[1]] >= x_subset_single_period[[1]][1], ]
num_obs <- length(x_subset_single_period[[2]])
}
# Calculate number of anomalies as a percentage
anom_pct <- (length(all_anoms[[2]]) / num_obs) * 100
# If there are no anoms, then let's exit
if (anom_pct == 0) {
if (verbose) message("No anomalies detected.")
return(data.frame())
}
# Store expected values if set by user
if (e_value) {
anoms <- data.frame(index = all_anoms[[1]], anoms = all_anoms[[2]],
expected_value =
seasonal_plus_trend[[2]][seasonal_plus_trend[[1]] %in% all_anoms[[1]]])
} else {
anoms <- data.frame(index = all_anoms[[1]], anoms = all_anoms[[2]])
}
class(anoms) <- c("tbl_df", "tbl", "data.frame")
return(anoms)
}
#' @rdname AnomalyDetectionVec
#' @export
ad_vec <- AnomalyDetectionVec
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.