R/DNAcopy.EXTS.R

###########################################################################/**
# @set class=CBS
# @RdocMethod as.DNAcopy
#
# @title "Coerces a CBS object to a DNAcopy object"
#
# \description{
#  @get "title".
# }
#
# @synopsis
#
# \arguments{
#   \item{fit}{A @see "CBS" object."}
#   \item{...}{Not used.}
# }
#
# \value{
#   Returns a @see "DNAcopy" object (of the \pkg{DNAcopy} package).
# }
#
# \examples{
#   @include "../incl/segmentByCBS.Rex"
#   @include "../incl/as.DNAcopy.Rex"
# }
#
# @author "HB"
#
# \seealso{
#   \code{\link[PSCBS:as.CBS.DNAcopy]{as.CBS()}}.
#   @seeclass
# }
#
# @keyword internal
#*/###########################################################################
setMethodS3("as.DNAcopy", "CBS", function(fit, ...) {
  sampleName <- getSampleName(fit)
  if (is.na(sampleName)) sampleName <- "<NA>"

  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Setup the 'data' field
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  data <- getLocusData(fit)

  # Keep only certain columns
  keep <- match(c("chromosome", "x"), colnames(data))
  keep <- c(keep, 3L)
  data <- data[,keep,drop=FALSE]

  # Sanity check
  .stop_if_not(ncol(data) == 3)

  # Rename column names
  colnames(data) <- c("chrom", "maploc", sampleName)

  class(data) <- c("CNA", "data.frame")
  attr(data, "data.type") <- "logratio"


  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Setup the 'output' field
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  output <- getSegments(fit, splitters=FALSE)
  rownames <- rownames(output)

  output <- data.frame(
    ID        = sampleName,
    chrom     = output$chromosome,
    loc.start = output$start,
    loc.end   = output$end,
    num.mark  = output$nbrOfLoci,
    seg.mean  = output$mean,
    stringsAsFactors=FALSE
  )
  rownames(output) <- rownames


  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Setup up 'DNAcopy' object
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  res <- list()
  res$data <- data
  res$output <- output
  res$call <- NA
  class(res) <- "DNAcopy"

  res
}, protected=TRUE) # as.DNAcopy()



setMethodS3("nbrOfSegments", "DNAcopy", function(fit, ...) {
  segs <- fit$output
  nrow(segs)
})

setMethodS3("nbrOfLoci", "DNAcopy", function(fit, ...) {
  nrow(fit$data)
})

setMethodS3("nbrOfSamples", "DNAcopy", function(fit, ...) {
  length(getSampleNames(fit, ...))
})

setMethodS3("getSampleNames", "DNAcopy", function(fit, ...) {
  names <- colnames(fit$data)
  names <- setdiff(names, c("chrom", "maploc"))
  names
})

setMethodS3("getChromosomes", "DNAcopy", function(fit, ...) {
  chromosomes <- fit$data$chrom
  sort(unique(chromosomes))
})


setMethodS3("estimateStandardDeviation", "DNAcopy", function(fit, sample=1L, method=c("diff", "abs", "res"), estimator=c("mad", "sd"), na.rm=TRUE, weights=NULL, ...) {
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Validate arguments
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Argument 'sample':
  sample <- Arguments$getIndex(sample, max=nbrOfSamples(fit))

  # Argument 'method':
  method <- match.arg(method)

  # Argument 'estimator':
  estimator <- match.arg(estimator)



  nbrOfLoci <- nbrOfLoci(fit)

  # Argument 'weights':
  if (!is.null(weights)) {
    weights <- Arguments$getNumerics(weights, range=c(0,Inf), length=rep(nbrOfLoci, times=2))
  }


  # Nothing to do?
  if (nbrOfLoci <= 1) {
    return(NA_real_)
  }

  # Get the estimator function
  if (!is.null(weights)) {
    estimator <- sprintf("weighted %s", estimator)
    estimator <- R.utils::toCamelCase(estimator)
  }
  estimatorFcn <- get(estimator, mode="function")


  # Extract sample of interest
  fit <- subset(fit, samplelist=sample)

  y <- fit$data[,3L]

  if (method == "diff") {
    y <- diff(y)

    # Weighted estimator?
    if (!is.null(weights)) {
      # Calculate weights per pair
      weights <- (weights[1:(nbrOfLoci-1)]+weights[2:nbrOfLoci])/2
      sigma <- estimatorFcn(y, w=weights, na.rm=na.rm)/sqrt(2)
    } else {
      sigma <- estimatorFcn(y, na.rm=na.rm)/sqrt(2)
    }
  } else if (method == "abs") {
    if (!is.null(weights)) {
      sigma <- estimatorFcn(y, w=weights, na.rm=na.rm)
    } else {
      sigma <- estimatorFcn(y, na.rm=na.rm)
    }
  } else if (method == "res") {
     yS <- extractSegmentMeansByLocus(fit)
     dy <- y - yS
      if (!is.null(weights)) {
        sigma <- estimatorFcn(dy, w=weights, na.rm=na.rm)
      } else {
        sigma <- estimatorFcn(dy, na.rm=na.rm)
      }
  } else {
    stop("Method no implemented: ", method)
  }

  sigma
}) # estimateStandardDeviation()


setMethodS3("extractSegmentMeansByLocus", "DNAcopy", function(fit, sample=1L, ...) {
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Validate arguments
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Argument 'sample':
  sample <- Arguments$getIndex(sample, max=nbrOfSamples(fit))

  # Extract sample of interest
  fit <- subset(fit, samplelist=sample)

  data <- fit$data
  chr <- data$chrom
  x <- data$maploc
  y <- data[,sample,drop=TRUE]

  segs <- fit$output
  nbrOfSegments <- nrow(segs)
  nbrOfLoci <- nbrOfLoci(fit)

  # Get mean estimators
  estList <- getMeanEstimators(fit, "y")
  avgY <- estList$y

  yS <- y
  for (ss in seq_len(nbrOfSegments)) {
    seg <- segs[ss,]
    idxs <- which(seg$chrom == chr & seg$loc.start <= x & x <= seg$loc.end)
    idxs <- Arguments$getIndices(idxs, max=nbrOfLoci)

    ySS <- y[idxs]
    ok <- is.finite(ySS)
    # Sanity check
    ## .stop_if_not(sum(ok) == seg$num.mark) # Not dealing with ties
    mu <- avgY(ySS[ok])
    yS[idxs] <- mu
  } # for (ss ...)

  yS
}, private=TRUE) # extractSegmentMeansByLocus()



setMethodS3("writeSegments", "DNAcopy", function(fit, samples=seq_len(nbrOfSamples(fit)), ...) {
  # Argument 'samples':
  samples <- Arguments$getIndices(samples, max=nbrOfSamples(fit))

  pathnames <- c()
  for (ii in samples) {
    fitII <- as.CBS(fit, sample=ii)
    pathnameII <- writeSegments(fitII, ...)
    pathnames <- c(pathnames, pathnameII)
  } # for (ii ...)

  pathnames
}) # writeSegments()
HenrikBengtsson/PSCBS documentation built on Feb. 20, 2024, 9:01 p.m.