groupSigSpatialPatterns: Group significant spatial patterns

View source: R/main.R

groupSigSpatialPatternsR Documentation

Group significant spatial patterns

Description

Identify primary spatial patterns using hierarchical clustering and dynamic tree cutting

Usage

groupSigSpatialPatterns(
  pos,
  mat,
  scc,
  hclustMethod = "complete",
  trim = 0,
  deepSplit = 0,
  minClusterSize = 0,
  power = 1,
  plot = TRUE,
  verbose = TRUE,
  ...
)

Arguments

pos

Position matrix where each row is a cell, columns are x, y, (optionally z) coordinations

mat

Gene expression matrix. Must be normalized such that correlations will not be driven by technical artifacts

scc

Spatial cross-correlation matrix

hclustMethod

Linkage criteria for hclust()

trim

Winsorization trim

deepSplit

Tuning parameter for dynamic tree cutting cutreeDynamic()

minClusterSize

Smallest gene cluster size

power

Raise distance matrix to this power

plot

Whether to plot

verbose

Verbosity

...

Additional plotting parameters


JEFworks/MERingue documentation built on June 11, 2022, 4:16 a.m.