View source: R/correlationStatistics.R
spatialCrossCorTest | R Documentation |
Tests for significance of spatial cross correlation for two features using random label null model
spatialCrossCorTest(x, y, w, n = 1000, ncores = 1, plot = FALSE, ...)
x |
Feature 1 value |
y |
Feature 2 value |
w |
Binary weight matrix |
n |
Permutation iterations |
ncores |
Number of cores for parallel processing |
plot |
Plot permutated distribution |
... |
Additional parameters to pass to histogram plotting |
Two-sided test p-value
## Not run: data(mOB) pos <- mOB$pos w <- getSpatialNeighbors(pos) gexp <- normalizeCounts(mOB$counts, log=FALSE, verbose=FALSE) pv1 <- spatialCrossCorTest(gexp['Gpsm1',], gexp['Nrgn',], w) pv2 <- spatialCrossCorTest(gexp['Gpsm1',], gexp['Glul',], w) pv3 <- spatialCrossCorTest(gexp[1,], gexp[2,], w) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.