#' Classify bemovi data by using the archived data
#'
#' @param archive_dir
#' @param magnification the magnification or the bemovi videos to be reclassified
#' @param bemovi_extract_name the name of the `.yml` containing the parameter for the analysis in the directory of the data. The directory depends on the `root_dir`, `magnification` and `timestamp`
#' @param species_tracked names of the species tracked as a character vector. If `NULL` the species tracked from the `bemovi_extract_file` will be used.
#' @param timestamps `character` vector containing the timestamps to be classified
#' @param classifier_constant_name `character` vector of name of the classifier for temperature treatment **constant** including path
#' @param classifier_increasing_name `character` vector of name of the classifier for temperature treatment **increasing** including path
#' @param output path to which the classified data will be saved as `rds`
#' @param exclude_videos file names of videos to exclude. If \code{NULL}, all will be used.
#' @param mc.cores number of cores to be used. Defaults to 1
#'
#' @return invisible `NULL`
#'
#' @importFrom pbmcapply pbmclapply
#' @importFrom yaml read_yaml write_yaml
#' @export
#'
#' @md
#' @examples
#'
#'
classify_bemovi_archive <- function(
archive_dir = "/Users/rainerkrug/MountainDuck/LEEFSwift3",
magnification = 16,
bemovi_extract_name = "bemovi_extract.yml",
species_tracked = NULL,
timestamps,
classifier_constant_name,
classifier_increasing_name,
output,
exclude_videos = NULL,
mc.cores = 1
){
dir.create(
output,
showWarnings = FALSE,
recursive = TRUE
)
dir <- tempfile(pattern = "extracted.data_")
dir.create(dir, recursive = TRUE, showWarnings = TRUE)
# do the stuff -------------------------------------------------------
return(
# parallel::pbmclapply(
pbmcapply::pbmclapply(
timestamps,
function(timestamp){
datadir <- file.path(
archive_dir,
"LEEF.archived.data/LEEF/3.archived.data/extracted",
paste0("LEEF.bemovi.mag.", as.character(magnification), ".bemovi.", as.character(timestamp))
)
message("###############################################")
message("Classifying timestamp ", timestamp, "...")
beyml <- file.path(datadir, bemovi_extract_name)
if (!file.exists(beyml)) {
return(FALSE)
}
if (!is.null(species_tracked)) {
p <- yaml::read_yaml(beyml)
p$species_tracked <- species_tracked
beyml <- file.path(dir, bemovi_extract_name)
yaml::write_yaml(p, beyml)
}
suppressMessages(
{
classified <- NULL
try(
expr = {
classified <- classify_bemovi_files(
datadir = datadir,
bemovi_extract_name = beyml,
classifier_constant_name = classifier_constant_name,
classifier_increasing_name = classifier_increasing_name,
exclude_videos
)
}
)
}
)
if (!is.null(classified)) {
message("Saving timestamp ", timestamp, "...")
classified$mean_density_per_ml <- cbind(timestamp = timestamp, classified$mean_density_per_ml)
p <- yaml::read_yaml(file.path(datadir, bemovi_extract_name))
trajectory_path <- file.path(output, "trajectories")
dir.create(
output,
recursive = TRUE,
showWarnings = FALSE
)
dir.create(
trajectory_path,
recursive = TRUE,
showWarnings = FALSE
)
saveRDS(
classified$morph_mvt,
file = file.path(
output,
tolower(gsub("\\.rds$", paste0(".", timestamp, ".rds"), p$morph_mvt))
)
)
saveRDS(
classified$mean_density_per_ml,
file = file.path(
output,
tolower(gsub("\\.rds$", paste0(".", timestamp, ".rds"), p$mean_density))
)
)
saveRDS(
classified$trajectory_data,
file = file.path(
trajectory_path,
tolower(gsub("\\.rds$", paste0(".", timestamp, ".rds"), p$master))
)
)
} else {
message("ERROR in classifying timestamp ", timestamp)
}
message("Done")
message("###############################################")
invisible(NULL)
},
mc.preschedule = FALSE,
mc.cores = mc.cores
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.