knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
Install the most recent stable version from Bioconductor:
if (!requireNamespace("BiocManager", quietly=TRUE)) install.packages("BiocManager") BiocManager::install("CAGEfightR")
And load CAGEfightR
:
library(CAGEfightR)
Alternatively, you can install the development version directly from GitHub using devtools
:
devtools::install_github("MalteThodberg/CAGEfightR")
If you use CAGEfightR, please cite the following article:
citation("CAGEfightR")
For general questions about the usage of CAGEfightR, use the official Bioconductor support forum and tag your question "CAGEfightR". We strive to answer questions as quickly as possible.
For technical questions, bug reports and suggestions for new features, we refer to the CAGEfightR github page.
A CAGEfightR anaysis usually starts with loading CAGE Transcription Start Sites (CTSSs) from BigWig-files, one for each strand (If you do not have CTSSs as BigWig-files, look at convertBED2BigWig
for instructions on how to convert file formats):
# Load the example data data("exampleDesign") head(exampleDesign) # Locate files on your harddrive bw_plus <- system.file("extdata", exampleDesign$BigWigPlus, package = "CAGEfightR") bw_minus <- system.file("extdata", exampleDesign$BigWigMinus, package = "CAGEfightR") # Create two named BigWigFileList-objects: bw_plus <- BigWigFileList(bw_plus) bw_minus <- BigWigFileList(bw_minus) names(bw_plus) <- exampleDesign$Name names(bw_minus) <- exampleDesign$Name
The first step is to quantify CTSSs across all samples using quantifyCTSSs
, which will return the results as a RangedSummarizedExperiment
:
# Get genome information genomeInfo <- SeqinfoForUCSCGenome("mm9") # Quantify CTSSs CTSSs <- quantifyCTSSs(plusStrand=bw_plus, minusStrand=bw_minus, design=exampleDesign, genome=genomeInfo)
The wrapper function quickTSSs
will automatically find and quantify candidate TSSs, returning the results as a RangedSummarizedExperiment
:
TSSs <- quickTSSs(CTSSs)
Similarly, quickEnhancers
will find and quantify candidate enhancers:
enhancers <- quickEnhancers(CTSSs)
We can then use transcript models stored in a TxDb
-object to annotate each candidate TSS and enhancer with their transcript context:
# Use the built in annotation for mm9 library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene # Annotate both TSSs and enhancers TSSs <- assignTxType(TSSs, txModels=txdb) enhancers <- assignTxType(enhancers, txModels=txdb)
Usually, candidate enhancers overlapping known transcripts are removed:
enhancers <- subset(enhancers, txType %in% c("intergenic", "intron"))
For usage with other Bioconductor package, it can be useful to merge candidate TSSs and enhancers into a single object:
# Add an identifier column rowRanges(TSSs)$clusterType <- "TSS" rowRanges(enhancers)$clusterType <- "enhancer" # Combine TSSs and enhancers, discarding TSSs if they overlap enhancers RSE <- combineClusters(TSSs, enhancers, removeIfOverlapping="object1")
For use with packages for calling differential expression (DESeq2, edgeR, limma, etc.) very lowly expressed features are removed:
# Only keep features with more than 0 counts in more than 1 sample: RSE <- subsetBySupport(RSE, inputAssay = "counts", outputColumn = "support", unexpressed = 0, minSamples = 1)
For interfacing with other tools for gene-level analysis, we can quantify gene expression:
gene_level <- quickGenes(RSE, geneModels = txdb)
But it is much cooler to leverage some of the unique features of 5'-end methods, for example, we can calculate the correlation of expression of nearby TSSs and enhancers:
# Set TSSs as reference points rowRanges(RSE)$clusterType <- factor(rowRanges(RSE)$clusterType, levels=c("TSS", "enhancer")) # Find pairs and calculate kendall correlation between them links <- findLinks(RSE, inputAssay="counts", maxDist=5000, directional="clusterType", method="kendall")
Other 5'-end analysis tasks include classifying TSSs based on shape, and identifying groups of closely space enhancers (super enhancers). This and more is described in more detail below!
Cap Analysis of Gene Expression (CAGE) is one of the most popular 5'-end high-throughput assays for profiling Transcription Start Site (TSS) activity. CAGE is based on sequencing the first 20-30 basepairs of capped full-length RNAs, called CAGE-tags. When mapped to a reference genome, CAGE-tags can be used to identify both TSSs and enhancers. See the CAGEfightR
paper for additional introduction.
CAGE-data is often represented as CAGE TSSs (CTSSs), which is the the number of CAGE-tag 5'-ends mapping to each genomic position. CTSSs thereby represent a genome-wide, basepair resolution, quantitative atlas of transcription. CTSSs are inherently sparse, as only very few genomic positions are CTSSs, and only very few CTSSs have a high number of CAGE-tags.
Analysis of CAGE data is often focused on identifying clusters of CTSSs that corresponds to activity of individual TSSs and enhancers. Having access to both TSSs and enhancers in a single experiment makes CAGE well suited for studying many aspects of transcriptional regulation, for example differential expression, motif analysis and alternative TSS usage.
While the examples in this vignette is based on CAGE, other 5'-end methods (PRO-Cap, START-Seq, TSS-Seq, etc.) can be analyzed in the same way.
There are two key S4-classes to understand when using CAGEfightR:
The GRanges
-class: Genomic locations or ranges are stored as GRanges
-objects from the r BiocStyle::Biocpkg("GenomicRanges")
package. GRanges
contain chromosome (seqnames
), start (start
) and end (end
) positions of ranges, along with chromosome lengths (seqinfo
). An important additional feature is information on each range via metadata columns (mcols
). These can be almost anything, as long as they can be put into a DataFrame
. Some metadata columns have special meanings: the score column (accesible via the score
function) and thick column, as these columns can be exported to a standard BED-format file via the export
function from the r BiocStyle::Biocpkg("rtracklayer")
package.
The RangedSummarizedExperiment
-class: Complete experiments can be stored as RangedSummarizedExperiment
-objects from the r BiocStyle::Biocpkg("SummarizedExperiment")
, which implements the idea of the "three tables of genomics". A RangedSummarizedExperiment
can store several matrices of the same shape, e.g. counts and normalized expression values (accesible via assay
and assays
), along with information about each sample as a DataFrame
-object (accesible via colData
) and about each feature as a GRanges
-object like above (accesible via rowRanges
). Many GRanges
methods also work onRangedSummarizedExperiment
-objects, like sort
, findOverlaps
, etc.. Storing all information as a single RangedSummarizedExperiment
helps keeping data organized, for example when extracting subsets of the data, where subset
can be used to simultaneously extract requested data from all three tables at once.
Other S4-classes includes TxDb
-objects from r BiocStyle::Biocpkg("GenomicFeatures")
, GInteractions
-object from r BiocStyle::Biocpkg("InteractionSet")
and various track-objects from r BiocStyle::Biocpkg("Gviz")
. See [Annotation with transcript models], [Spatial analysis of clusters] and [Plotting CAGE data in a genome browser] for more details.
CAGEfightR conceptually analyses CAGE-data at 3 levels:
1) CTSS-level: Analysis at the level of number of CAGE tags per CTSS. 2) Cluster-level: Analysis at the level of clusters of CTSSs, usually TSSs and/or enhancers. 3) Gene-level: Analysis at the level of annotated genes.
For easier overview, functions in CAGEfightR
are organized by prefixes. The most important groups are:
The quantify*
-functions summarizes CAGE data to a higher level. In all cases, data is a stored as a RangedSummarizedExperiment
:
quantifyCTSSs
: Quantify the number of CAGE-tags for each CTSSs from BigWig-files.quantifyClusters
: Quantify the number of CAGE-tags within clusters of CTSSs, usually TSSs or enhancers.quantifyGenes
: Quantify the number of CAGE-tags within annotated genes, by summing the number of CAGE-tags annotated clusters.The calc*
-functions modify data stored in a RangedSummarizedExperiment
. The following calc*
functions perform basic calculations applicable to all three levels:
calcTotalTags
: Calculate the total number of CAGE tags in a library.calcTPM
: Calcuate Tags-Per-Million (TPM).calcPooled
: Calculate a pooled signal across all samples.calcSupport
: Count the number of samples expression a feature above some level. Useful for removing lowly expressed features via the subsetBySupport
wrapper.Some calc*
functions only work for a specfic level:
calcShape
: Quantify the shape of TCs using shape*
-functions.calcBidirectionality
: Count the number of samples showing bidirectional transcription. Useful for finding candidate enhancers via the subsetByBidirectionality
wrapper.calcComposition
: Calculate how much each TSSs contribute to gene expression. Useful for removing lowly expressed TSSs via the subsetByComposition
wrapper.The cluster*
-functions can cluster CTSSs to find TSSs or enhancers:
clusterUnidirectionally
: Find unidirectional or Tag Clusters (TCs). Search threshold can be be found using tuneTagClustering
. TCs can be modified using the trim*
-functions.clusterBidirectionally
: Find bidirectional clusters (BCs) for enhancer identification.The assign*
-functions can annotate CTSSs and clusters with transcript and genes models:
assignTxID
: Annotate clusters with transcript IDs.assignTxType
: Annotate clusters based on their overlap with known transcripts, for example to determine whether a TSS is known or novel.assignGeneID
: Annotate with gene IDs, for example prior to running quantifyGenes.The find*
-functions perform spatial analysis of clusters:
findLinks
: Finds nearby pairs of clusters and calculates correlation of expression between them. This can be used to find nearby TSSs-enhancer pairs that show similar expression.findStretches
: Find groups of clusters along the genome. This can be used to find tightly spaced groups of enhancers, often refered to as "super enhancers".Other groups of functions are
check*
-functions for making sure objects are correctly formatted.convert*
-functions convert CTSSs between different file formats.bw*
-functions for checking BigWig-files.swap*
-functions for manipulating GRanges
-objects.track*
-functions for genome browser visualization.combine*
-functions for safe merging of different types of clusters. quick*
-functions are high-level wrappers for many other functions, intended to be used as single-line execution of the standard pipeline. utils*
-functions expose some of the inner workings of CAGEfightR
and are mainly intended for expert users and developers.The majority of functions in CAGEfightR
are endomorphisms, meaning they returned modified versions of the input objects. This often works by adding calculated values as new metadata columns, accesible via rowData
or mcols
.
While not used in this vignette, this means that CAGEfightR is highly compatible with the pipes from the r BiocStyle::CRANpkg("magrittr")
package.
The main exceptions to pipeable functions this are the quantify*
-functions, that instead summarize data between different levels.
The following section contains a detailed walkthrough of most of the functions in CAGEfightR
, using the built-in dataset. To keep this vignette compact, the example dataset is extremely small - for a more realistic analysis of a full CAGE dataset using both CAGEfightR
and additional packages, see r BiocStyle::Biocpkg("CAGEWorkflow")
.
As shown in the introduction [Quick start for the impatient], the first step of a CAGEfightR
analysis is import of CTSSs from BigWig-files with the quantifyCTSSs
function. Rather than repeating this, we use the built-in exampleCTSSs
object:
data(exampleCTSSs)
exampleCTSSs
This is a somewhat special RangedSummarizedExperiment
: The assay is not a normal matrix
, but rather a sparse matrix (dgCMatrix
from the r BiocStyle::CRANpkg("Matrix")
package). Since CAGE data is inherently sparse (vast majority sites in the genome have no counts), storing CTSSs as a sparse matrix allows for much faster and memory efficient processing of data:
head(assay(exampleCTSSs))
The ranges are stored as GPos
, where all ranges a one basepair wide. Again, this is much more memory-efficient way of storing CTSSs:
rowRanges(exampleCTSSs)
For clustering CTSSs, we first want to calculate the the overall CTSSs signal across all samples, called pooled CTSSs. However, since the different samples have different library sizes, CTSS counts must first be normalized. The simplest way of doing this is to use Tags-Per-Million (TPM, not to be confused with Transcripts-Per-Million or TxPM used in RNA-Seq):
exampleCTSSs <- calcTPM(exampleCTSSs, inputAssay="counts", outputAssay="TPM", outputColumn="subsetTags")
calcTPM
will calculate the total number of tags for each sample and store them in colData, and then scale counts into TPM and add them as a new assay:
# Library sizes colData(exampleCTSSs) # TPM values head(assay(exampleCTSSs, "TPM"))
As this is just a subset of the original dataset, we instead use the total number tags from the the complete dataset, by specifying the name of the column in colData (Note that a warning is passed that we are overwritting the previous TPM assay):
exampleCTSSs <- calcTPM(exampleCTSSs, inputAssay="counts", totalTags="totalTags", outputAssay="TPM") head(assay(exampleCTSSs, "TPM"))
calcPooled
will calculate pooled CTSSs by summing up TPM across samples for each CTSS and store it in the score-column:
# Library sizes exampleCTSSs <- calcPooled(exampleCTSSs, inputAssay="TPM") rowRanges(exampleCTSSs)
In some cases you might have a very large number of and/or very noisy samples (For example due to poor RNA quality), which can lead to an increase in the number of single tags spread across the genome. To alleviate this issue, CTSSs appearing in only a single or few samples can be discarded. We refer to this as calculating the support: the number of samples expressing a feature above some threshold:
# Count number of samples with MORE ( > ) than 0 counts: exampleCTSSs <- calcSupport(exampleCTSSs, inputAssay="counts", outputColumn="support", unexpressed=0) table(rowRanges(exampleCTSSs)$support)
The majority of CTSSs are only expressed in a single sample. We can discard these sites using subset
, and then recalculate TPM values:
supportedCTSSs <- subset(exampleCTSSs, support > 1) supportedCTSSs <- calcTPM(supportedCTSSs, totalTags="totalTags") supportedCTSSs <- calcPooled(supportedCTSSs)
Note, CAGEfightR
warned that it was overwritting columns: Another option would be to save the output as new columns. The subsetBySupport
function wraps the common task of calling calcSupport
and subset
.
Once we have obtained pooled CTSSs, we can identify various types of clusters: Transcripts are rarely transcribed from just a single CTSS, but rather from a collection or cluster of nearby CTSSs corresponding to a single TSS.
The simplest way of doing this is to group nearby CTSSs on the same strand into Tag Clusters (TCs), which are likely candidates for real TSSs (although some post-filtering is almost always a good idea, see next section). CAGEfightR
does this by a slice-reduce approach: It finds sites above some value (slice) and then merges nearby sites (reduce). In the simplest form this can be run as:
simple_TCs <- clusterUnidirectionally(exampleCTSSs, pooledCutoff=0, mergeDist=20)
clusterUnidirectionally
find TCs and outputs some summary statistics. We see that we have some very wide TCs (> 100 bp wide, in real datasets it's not uncommon to see > 1000 bp wide). This is often the result of a just few spread-out tags that link several major TCs, which does not represent the TSS structure very well. One way of dealing with this is to increase the the pooled cutoff for calling clusters. Another way is to first filter the CTSSs based on support:
# Use a higher cutoff for clustering higher_TCs <- clusterUnidirectionally(exampleCTSSs, pooledCutoff=0.1, mergeDist=20) # Use CTSSs pre-filtered on support. prefiltered_TCs <- clusterUnidirectionally(supportedCTSSs, pooledCutoff=0, mergeDist=20)
Both approaches reduces the overall width of the TCs identified, in particular the most wide TCs. In practice, whether or not a higher pooled cutoff and/or prefiltering is used depends on how noisy a given dataset is. A large number of very wide clusters (> 1000 bp wide) and unusual location of TCs relative to known genes (See [Annotation with transcript models] below) could indicate an unstable tag clustering.
Now let's take a closer look at what's returned:
simple_TCs
The GRanges
includes the chromosome, start and end positions of each TCs, as well as two other key values: The TC peak in the thick column: This the single position within the TC with the highest pooled TPM, and the sum of pooled TPM within the TC in the score column. In case you want to save TCs to a bed file, you can use the export
function from the r BiocStyle::Biocpkg("rtracklayer")
package.
CAGE is a unique technology in that it allows for the robust identification of enhancers by transcription of enhancer RNAs (eRNAs). Active enhancers produce weak but consistent bidirectional transcription of capped eRNAs, resulting in a characteristic CTSS pattern of two diverging peaks approximally 400 basepairs apart. A similar approach can be used for other 5'-end methods such as PRO-Cap.
CAGEfightR can identify this pattern by calculating a balance score ranging from 0 to 1, where 1 corresponds to perfectly divergent site (Technically, the balance score is the Bhattacharyya coefficient measuring agreement with the "ideal" divergent site, see the CAGEfightR
paper). Again, a slice-reduce approach can be use to identify invidividual enhancers based on the balance scores. We refer to this approach as bidirectional clustering as opposed to the conventional unidirectional clustering used to identify TSSs: and hence the name of the cluster functions: clusterBidirectionally
and clusterUnidirectionally
:
BCs <- clusterBidirectionally(exampleCTSSs, balanceThreshold=0.95)
Let's look closer at the returned GRanges
:
BCs
The GRanges
includes the chromosome, start and end positions of each Bidirectional Cluster (BC), as well as two other key values: the score column holds the sum of pooled CTSSs of the BC (on both strands) and the BC midpoint in the thick column: This is the maximally balanced site in the BC Again, the export
function from the r BiocStyle::Biocpkg("rtracklayer")
package can be used to export enhancers to a BED-file.
As balance here is solely defined on the pooled CTSSs, a useful filter is to make sure the BC is observed to be bidirectional in at least a single sample. Similarly to how we calculated support, we can calculate the sample-wise bidirectionality of BCs:
# Calculate number of bidirectional samples BCs <- calcBidirectionality(BCs, samples=exampleCTSSs) # Summarize table(BCs$bidirectionality)
Many BCs are not observed to be bidirectional in one or more samples. We can remove these using subset
(The subsetBySupport
function wraps the common task of calling calcBidirectionality
and subset
):
enhancers <- subset(enhancers, bidirectionality > 0)
This bidirectional clustering approach identifies any bidirectional site in the genome. This means that for example bidirectional promoters will also detected (given that they are sufficiently balanced). To remove these cases, annotation with transcript models can be used to remove bidirectional clusters overlapping known promoters and exons. This is described in the next section.
Once interesting clusters (unidirectional TSSs candidates and bidirectional enhancer candidates) have been identified, they can be quantified and annotated with transcript models. We show this functionality using the built-in example data:
# Load the example datasets data(exampleCTSSs) data(exampleUnidirectional) data(exampleBidirectional)
To look at differential expression, we must quantify the expression of each TC in each sample (in almost all cases you want to quantify the raw CTSS counts). This can be done using the quantifyClusters
function (The example datasets have already been quantified, so here we will re-quantify the clusters):
requantified_TSSs <- quantifyClusters(exampleCTSSs, clusters=rowRanges(exampleUnidirectional), inputAssay="counts") requantified_enhancers <- quantifyClusters(exampleCTSSs, clusters=rowRanges(exampleBidirectional), inputAssay="counts")
This returns a RangedSummarizedExperiment with clusters in rowRanges and a count matrix in assays.
We often wish to remove weakly expressed clusters. Similarly to CTSSs, a simple approach is to remove cluster based on counts using the subsetBySupport
function:
# Only keep BCs expressed in more than one sample supported_enhancers <- subsetBySupport(exampleBidirectional, inputAssay="counts", unexpressed=0, minSamples=1)
Similarly, we can also first calculate TPM values for clusters, and then filter on TPM values:
# Calculate TPM using pre-calculated total tags: exampleUnidirectional <- calcTPM(exampleUnidirectional, totalTags = "totalTags") # Only TSSs expressed at more than 1 TPM in more than 2 samples exampleUnidirectional <- subsetBySupport(exampleUnidirectional, inputAssay="TPM", unexpressed=1, minSamples=2)
While CAGE can identify TSSs and enhancers completely independent of annotation, it is often useful to compare these to existing annotations. Bioconductor stores transcript models using the TxDb
class from the r BiocStyle::Biocpkg("GenomicFeatures")
package. There are multiple ways to obtain a TxDb
object:
TxDb
-objects included as Bioconductor packages: For this vignette we use the r BiocStyle::Biocpkg("TxDb.Mmusculus.UCSC.mm9.knownGene")
package.makeTxDbFromGFF
function from r BiocStyle::Biocpkg("GenomicFeatures")
.r BiocStyle::Biocpkg("AnnotationHub")
package to directly download TxDb
objects for a wide range of organisms.makeTxDbFromBiomart
, makeTxDbFromUCSC
or makeTxDbFromEnsembl
from r BiocStyle::Biocpkg("GenomicFeatures")
to create TxDb
-objects from various online sources.In case you really do not want to use a TxDb
object, all annotation functions in CAGEfightR
also accepts GRanges
or GRangesList
as input.
library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene txdb
First, we might simply inquire as to what transcripts overlaps our clusters, which is done via the assignTxID
function:
exampleUnidirectional <- assignTxID(exampleUnidirectional, txModels=txdb, outputColumn="txID")
Note, that a single TC can overlap multiple transcripts (names are separated with a ;
):
rowRanges(exampleUnidirectional)[5:6]
In many cases, we are not so much interested in what specific transcripts a cluster overlaps, but rather where in a transcript a cluster lies - for example whether it is located at the annotated TSSs, in the 5'-UTR or in the CDS region. However, due to overlapping transcripts, these categories might overlap, for example a region might be an exon in one transcripts, but skipped in another due to alternative splicing. To get around this, CAGEfightR
implements a hierachical annotation scheme (See the CAGEfightR
paper for a detailed description), implemented in the assignTxType
function:
exampleUnidirectional <- assignTxType(exampleUnidirectional, txModels=txdb, outputColumn="txType")
The function returns a small summary of the annotation: At the top of the hierachy we have overlap with annotated promoter (+/- 100 basepairs from the annotated TSSs, with this distance being changeable when running the function), followed by proximal (-1000 upstream of the annotated TSS). Coding transcripts can be annotated as 5'-UTR, 3-'UTR, CDS and intron, while non-coding transcripts are simply annotated as exon or intron. At the bottom of the hierachy, clusters overlapping genes on the opposite strand are annotated as antisense. Finally, in case a cluster does not overlap any transcript, it is annotated as intergenic.
Highly expressed TSSs can be quite wide, and overlap many different categories. It can be useful to only annotate the TSSs peak rather than the the entire TSSs to obtain more representative annotations:
exampleUnidirectional <- assignTxType(exampleUnidirectional, txModels=txdb, outputColumn="peakTxType", swap="thick")
Annotation with transcript models are particular useful for enhancer detecting, since BCs might in some cases be very balanced bidirectional promoters. We can remove BCs overlapping known transcripts:
# Annotate with TxTypes exampleBidirectional <- assignTxType(exampleBidirectional, txModels=txdb, outputColumn="txType") # Only keep intronic and intergenic enhancers exampleBidirectional <- subset(exampleBidirectional, txType %in% c("intron", "intergenic"))
Of course, this way of filtering relies on having accurate transcript models!
We have already looked at two characteristics of Tag Clusters (TCs) in addition their genomic location: the expression level (score column) and TSSs peak (thick column). One can further describe TCs beyond these two measures. For example, it was found that mammalian TSSs can be divided into "sharp" or "broad" TSSs, by comparing the Interquartile Range (IQR). We refer to such a measure as a shape statistic and CAGEfightR
includes a few built-in functions for shape statistics (IQR, entropy) as well as an easy framework for implementing your own.
Let's see how this works by calculating the IQR for TSSs. First, we need to calculate pooled CTSS:
# Recalculate pooled signal exampleCTSSs <- calcTPM(exampleCTSSs, totalTags = "totalTags") exampleCTSSs <- calcPooled(exampleCTSSs) # Calculate shape exampleUnidirectional <- calcShape(exampleUnidirectional, pooled=exampleCTSSs, outputColumn = "IQR", shapeFunction = shapeIQR, lower=0.25, upper=0.75)
A plot of the distribution of IQR values reveals the distinction between broad and sharp TSSs:
hist(rowRanges(exampleUnidirectional)$IQR, breaks=max(rowRanges(exampleUnidirectional)$IQR), xlim=c(0,100), xlab = "IQR", col="red")
shapeEntropy
works in the same way. Advanced users may implement their own shape statistic by writing a new function:
# Write a function that quantifies the lean of a TSS shapeLean <- function(x, direction){ # Coerce to normal vector x <- as.vector(x) # Find highest position: i <- which.max(x) # Calculate sum i_total <- sum(x) # Calculate lean fraction if(direction == "right"){ i_lean <- sum(x[i:length(x)]) }else if(direction == "left"){ i_lean <- sum(x[1:i]) }else{ stop("direction must be left or right!") } # Calculate lean o <- i_lean / i_total # Return o } # Calculate lean statistics, # additional arguments can be passed to calcShape via "..." exampleUnidirectional <- calcShape(exampleUnidirectional, exampleCTSSs, outputColumn="leanRight", shapeFunction=shapeLean, direction="right") exampleUnidirectional <- calcShape(exampleUnidirectional, exampleCTSSs, outputColumn="leanLeft", shapeFunction=shapeLean, direction="left")
Since CAGE provides both the precise location and expression of clusters, one can analyze how these two are related: Do features that are adjacent in genomic space also show the same expression patterns? The classic example is finding likely TSS-enhancer interaction candidates by looking for closely spaced TSSs and enhancers that have highly correlated expression. Another example is finding stretches of closely spaced enhancers called "super enhancers" that often behave differently that solitary enhancers.
The findLinks
-function finds nearby pairs and calculates the correlation of their expression. In the simple case, all possible links (or pairs) between TCs can be found:
library(InteractionSet) TC_pairs <- findLinks(exampleUnidirectional, inputAssay="TPM", maxDist=10000, method="kendall") TC_pairs
The results are returned as a GInteractions
-object from the r BiocStyle::Biocpkg("InteractionSet")
package. In addition to the links themselves, the distance, correlation estimate and correlation p-value is calculated. The findLinks
-function is fairly flexible and can be used to calculate other correlation measures (see the ?findLinks
help page for how to do this). For example, one might want to calculate Pearson correlations on log TPM values instead of Kendall correlations.
Instead of simply finding all links, one can only look at links connecting TSSs and enhancers, e.g. nearby TCs and BCs. To find these, we must first merge the two sets of clusters and mark that we consider the TCs the reference points:
# Mark the type of cluster rowRanges(exampleUnidirectional)$clusterType <- "TSS" rowRanges(exampleBidirectional)$clusterType <- "enhancer" # Merge the dataset colData(exampleBidirectional) <- colData(exampleUnidirectional) SE <- combineClusters(object1=exampleUnidirectional, object2=exampleBidirectional, removeIfOverlapping="object1") # Mark that we consider TSSs as the reference points rowRanges(SE)$clusterType <- factor(rowRanges(SE)$clusterType, levels=c("TSS", "enhancer")) # Recalculate TPM values SE <- calcTPM(SE, totalTags="totalTags") # Find link between the groups: TCBC_pairs <- findLinks(SE, inputAssay="TPM", maxDist=10000, directional="clusterType", method="kendall") TCBC_pairs
When performing a directional analysis like this, the orientation between links is also calculated: In this case it is whether the enhancer is upstream or downstream of the TSS.
The findStretches
-function can identify groups of closely spaced clusters, where all clusters are within a certain distance of another member. For example, to find super enhancer candidates, one can find stretches of closely spaced BCs:
stretches <- findStretches(exampleBidirectional, inputAssay="counts", minSize=3, mergeDist=10000, method="spearman") stretches
The location of all stretches with a minimum number of BCs (in this case 3) is returned as a GRanges
. The number of clusters within the stretch and the average pairwise correlation (Spearman correlation of counts in this example) in the stretch is also returned. The revmap column can be used to extract the resulting stretches as a GRangesList
:
extractList(rowRanges(exampleBidirectional), stretches$revmap)
CAGE can detect TSSs and enhancers completely independent of existing gene models. However many databases of functional annotation, such as GO and KEGG terms, are only available at gene level. One might need to compare CAGE data to existing RNA-Seq or Microarray data only available at the level of genes.
Another typical analysis is to look at Differential TSS Usage (DTU), sometimes refered to as alternative TSSs or promoter switches. Here the aim is to identify if genes utilize different TSSs under different conditions, independently of whether the overall gene expression changes.
In a similar fashion to transcript annotation described above [Annotation with transcript models], gene models are obtained via TxDb
objects:
# Load example TSS data(exampleUnidirectional) # Keep only TCs expressed at more than 1 TPM in more than 2 samples: exampleUnidirectional <- calcTPM(exampleUnidirectional, totalTags = "totalTags") exampleUnidirectional <- subsetBySupport(exampleUnidirectional, inputAssay="TPM", unexpressed=1, minSamples=2) # Use the Bioconductor mm9 UCSC TxXb library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene
The assignGeneID
function annotate ranges with gene IDs:
exampleUnidirectional <- assignGeneID(exampleUnidirectional, geneModels=txdb, outputColumn="geneID")
TSSs not overlappping any genes receive NA, and in the (usually rare) case of a TC overlapping multiple genes, the gene with the closest annotated TSS is chosen:
What type of gene ID is returned of course depends on the source of the TxDb
object supplied. In this case, it is Entrez IDs, the most commonly used ID system in Bioconductor. Entrez IDs can be used to find the corresponding gene symbols using an OrgDb
object:
# Use Bioconductor OrgDb package library(org.Mm.eg.db) odb <- org.Mm.eg.db # Match IDs to symbols symbols <- mapIds(odb, keys=rowRanges(exampleUnidirectional)$geneID, keytype="ENTREZID", column="SYMBOL") # Add to object rowRanges(exampleUnidirectional)$symbol <- as.character(symbols)
For most gene-level operations in CAGEfightR
NAs (TCs not overlapping genes) are simply removed. If you wish to keep these TCs, you can relabel them as "Novel" genes via the assignMissingID
function:
exampleUnidirectional <- assignMissingID(exampleUnidirectional, outputColumn="symbol")
Once TCs have been assigned to genes, TC expression can be summed up within genes to obtain a gene-level expression matrix via the quantifyGenes
function:
genelevel <- quantifyGenes(exampleUnidirectional, genes="geneID", inputAssay="counts")
This returns a RangedSummarizedExperiment
with the same number of rows as genes. The ranges are returned as a GRangesList
of the individual TSSs making up the expression of the genes:
rowRanges(genelevel)
Gene-level values are accesible via the rowData
function:
rowData(genelevel)
The gene-level expression matrix can now be supplied to many other Bioconductor packages, including DESeq2, edgeR, limma, etc.
When looking at Differential TSS Usage (DTU) we are interested in changes in the contribution of individual TCs to overall gene expression. Since CAGE can detect even very lowly expressed TSSs, it is common to see TSSs making up only a very small fraction of the total gene expression. Removing these TSSs can improve power and clarity of downstream analyses.
CAGEfightR
can calculate the composition value of intragenic TCs, defined as the number of samples expressing a TC at more than a certain fraction of total gene expression. This is implemented in the calcComposition
function:
# Remove TSSs not belonging to any genes intragenicTSSs <- subset(exampleUnidirectional, !is.na(geneID)) # Calculate composition: # The number of samples expressing TSSs above 10% of the total gene expression. intragenicTSSs <- calcComposition(intragenicTSSs, outputColumn="composition", unexpressed=0.1, genes="geneID") # Overview of composition values: table(rowRanges(intragenicTSSs)$composition)
We can see that many TCs makes up less than 10% in all samples. These can be removed with subset
:
# Remove TSSs with a composition score less than 3 intragenicTSSs <- subset(intragenicTSSs, composition > 2)
The subsetByComposition
function wraps the common task of calling calcComposition
and subset
. After filtering, the resulting expression matrix can be used with popular Bioconductor packages for DTU calling, such as DEXSeq, DRIMSeq, edgeR, limma, etc.
Zenbu is an excellent online genome browser for visualizing CAGE data in relation to annotation in an interative manner. For producing figures (or possibly a very large number of figures) of specific genomic regions, it can be useful to use R to generate genome browser-like plots.
CAGEfightR
can produce genome browser plots via the popular and extensive r BiocStyle::Biocpkg("Gviz")
package. CAGEfightR
provides functions for generating genome browser tracks for both CTSSs and clusters. For general generation and customization of Gviz
plots we refer to the extensive r BiocStyle::Biocpkg("Gviz")
manual. Below we include some basic examples of visualizing CAGE data.
First we load use the built-in datasets:
library(Gviz) data("exampleCTSSs") data("exampleUnidirectional") data("exampleBidirectional")
First we make a track of pooled CTSSs:
# Calculate pooled CTSSs exampleCTSSs <- calcTPM(exampleCTSSs, totalTags="totalTags") exampleCTSSs <- calcPooled(exampleCTSSs) # Built the track pooled_track <- trackCTSS(exampleCTSSs, name="CTSSs")
The returned object is a DataTrack
, which we can plot a specific genomic region of:
# Plot the main TSS of the myob gene plotTracks(pooled_track, from=74601950, to=74602100, chromosome="chr18")
Secondly, we make a track of clusters: This function can handle both TSSs and enhancers, so we first merge them into a single object:
# Remove columns exampleUnidirectional$totalTags <- NULL exampleBidirectional$totalTags <- NULL # Combine TSSs and enhancers, discarding TSSs if they overlap enhancers CAGEclusters <- combineClusters(object1=exampleUnidirectional, object2=exampleBidirectional, removeIfOverlapping="object1") # Only keep features with more than 0 counts in more than 2 samples CAGEclusters <- subsetBySupport(CAGEclusters, inputAssay = "counts", unexpressed=0, minSamples=2) # Build track cluster_track <- trackClusters(CAGEclusters, name="Clusters", col=NA)
The returned object is a GeneRegionTrack
, which we can plot the same genomic region of:
# Plot the main TSS of the myob gene plotTracks(cluster_track, from=74601950, to=74602100, chromosome="chr18")
Of course, we want to combine several different tracks into a single overview. There is multiple ways of doing this, and the code below is just one such way:
# Genome axis tracks axis_track <- GenomeAxisTrack() # Transcript model track library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene tx_track <- GeneRegionTrack(txdb, chromosome = "chr18", name="Gene Models", col=NA, fill="bisque4", shape="arrow") # Merge all tracks all_tracks <- list(axis_track, tx_track, cluster_track, pooled_track) # Plot the Hdhd2 gene plotTracks(all_tracks, from=77182700, to=77184000, chromosome="chr18") # Plot an intergenic enhancer plotTracks(all_tracks, from=75582473, to=75582897, chromosome="chr18")
Finally we might one to zoom out even further and look at TSS-enhancer correlations across large distances in the genome. First we find links between TSSs and enhancers:
# Unstranded clusters are enhancers rowRanges(CAGEclusters)$clusterType <- factor(ifelse(strand(CAGEclusters)=="*", "enhancer", "TSS"), levels=c("TSS", "enhancer")) # Find links links <- findLinks(CAGEclusters, inputAssay="counts", directional="clusterType", method="kendall") # Only look at positive correlation links <- subset(links, estimate > 0)
Then we can plot the links using arches, scaling the height of the arches according to p-values:
# Save as a track all_tracks$links_track <- trackLinks(links, name="TSS-enhancer", col.interactions="black", col.anchors.fill ="dimgray", col.anchors.line = NA, interaction.measure="p.value", interaction.dimension.transform="log", col.outside="grey") # Plot region around plotTracks(all_tracks, from=84255991-1000, to=84255991+1000, chromosome="chr18", sizes=c(1, 1, 1, 1, 2))
In this case, the upstream enhancer has similar expression to two intronic TSSs, but not the annotated TSS.
Currently, two functions can utilize multiple cores for computation, quantifyCTSSs
and findLinks
. The central one is quantifyCTSSs
, which is usually the slowest and most memory consuming step of a CAGEfightR
analysis. quantifyCTSSs
automatically uses the default backend registered with the r BiocStyle::Biocpkg("BiocParallel")
package. This can be changed in the following way:
library(BiocParallel) # Setup for parallel execution with 3 threads: register(MulticoreParam(workers=3)) # Disable parallel execution register(SerialParam())
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.