# no filthy workspace:
rm(list = ls())
# while developing, maybe devtools::load_all is better than library,
# as current changes get loaded, and must not be installed
# library(DeconvolutionAlgorithmBenchmarking)
devtools::load_all(".")
library(tictoc)
# data from PB2
load("development/cll_normalized_sampled.rda")
# there are duplicated rows to deal with
cll.exprs <- cll.exprs[-which(duplicated(cll.exprs)), ]
bulks <- readRDS("development/real_bulks.rds")
genesets <- readRDS("development/genesets.RDS")
# remove patient '12'; does not contain useful cells
to.remove <- which(nchar(as.character(cll.pheno$patient)) < 4)
cll.exprs <- cll.exprs[, -to.remove]
cll.pheno <- cll.pheno[-to.remove, ]
# split by patient
patient.info <- substr(as.character(cll.pheno$patient), 1, 1)
# patient.info
# 1 5 6 8
# 439 2035 1524 379
# try to make it even, but training set slightly larger:
# also, 5 and 8 are rather similar overall (dendrogram),
# so mix it for better performance
training.samples <- which(patient.info == 5 | patient.info == 1)
test.samples <- which(patient.info == 6 | patient.info == 8)
grouping <- rep(1, (length(training.samples)+length(test.samples)))
grouping[test.samples] <- 2
tic("working example")
result <- benchmark(
sc.counts = cll.exprs
, sc.pheno = cll.pheno
, bulk.counts = bulks$bulks
, bulk.props = bulks$props
, benchmark.name = "test_benchmark"
, exclude.from.signature = c("unassigned")
, genesets = genesets
, simulation.bulks = TRUE
, simulation.genes = TRUE
, simulation.samples = TRUE
, simulation.subtypes = TRUE
, repeats = 2
, grouping = as.factor(grouping)
, temp.dir = "/home/tim/Git/DeconvolutionAlgorithmBenchmarking/.tmp/DAB_test_temp"
, input.algorithms = list("DTD", "Least_Squares")
, verbose = TRUE
)
toc()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.