library(readr)
library(ggplot2)
# library(purrr)
# library(stringr)
library(dplyr)
library(grid)
library(gridExtra)
library(tidyr)
setwd("")
# initial parameter satting
library(Rcpp)
Sys.setenv("PKG_CXXFLAGS"="-std=c++11")
sourceCpp("test_new_a.cpp")
load('cluster_data.RData')
load('origin_data.RData')
#' Basic description
#'
#' @description This function is used to fit the log-transformed infection counts of provinces/regions in China that introduced in Shi, Chen, Dong and Rao (2020)
#' @usage LogPLotCountry(data_clust, final)
#' @param data_clust
#' @param final
#' @examples
#'
#'
#'
#' LogPLotCountry(data_clust, final)
#' @seealso
#' @export
plot_res=LogPLotChina(data_clust, final)
residual_list_origin=plot_res$residual_list
pred_plot=plot_res$pred_plot
pred_plot_sim=plot_res$pred_plot_sim
save(pred_plot,pred_plot_sim,data_clust,final,file='E:/Desktop/R_test/covid_new_demand/pred_plot_data.RData')
save(residual_list_origin,file='E:/Desktop/R_test/covid_new_demand/residual_list_origin.RData')
LogPLotChina <- function(data_clust, final){
residual_list=list()
pred_plot=list()
pred_plot_sim=list()
mytheme <- theme(plot.title = element_text(hjust = 0.5, size = 22),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.text.x = element_text(size = 18,color='black'),
axis.text.y = element_text(size = 18,color='black'),
axis.title.x=element_text(size=25),
axis.title.y=element_text(size=25),
plot.margin=unit(c(2,2,2,2), 'lines'))
# fitting data
fun_fit <- function(start,end,data){
# fitting the origin data and return fitting results
para=GridSearch1(start:end,data,-20,20,-20,20,100)
# para=ini.par(beta00=-10,beta01=10,beta10=-10,beta11=10,x=c(start:end),y=data)
cat(c(as.numeric(para[1]),as.numeric(para[2]),as.numeric(para[3]),as.numeric(para[4]),as.numeric(para[5]),as.numeric(para[6])),'\n')
y <- data[3:(end-start+1)]
z1<-data[2:(end-start+1-1)]#t-1
z2<-data[1:(end-start+1-2)]#t-2
x <- seq(start+2,end,1)
# set.seed(1)
fit<-try(nlm1<- nls(y ~ alpha1*z1+alpha2*z2 + b*pnorm(beta1+beta2*x)+a, start=list(a=para$a ,b=para$b
,beta1=para$beta1 ,beta2=para$beta2, alpha1=para$alpha1,alpha2=para$alpha2),
control=nls.control(maxiter = 2000, tol = 1e-09, minFactor = 1/20240000, printEval = FALSE, warnOnly = T))
)
return(list(fit=fit,residual=para$residual,para=para))
}
#-----------------------------------------------------------------------------------------------#
# this section aim to predict the next part according to previous part
predict_fun<-function(a, b, beta1, beta2, alpha1,alpha2,x.new,z1_num,z2_num){
y_list = c()
for (x in x.new) {
cat('x=',x,'this is z2_num:',z2_num,'this is z1_num',z1_num,'\n')
y=alpha1*z1_num+alpha2*z2_num+b*pnorm(beta1+beta2*x)+a
cat('prediction result is:',y,'\n')
y_list=c(y_list,y)
z2_num = z1_num
z1_num = y
}
cat('res is:',y_list,'\n')
return(y_list)
}
#-----------------------------------------------------------------------------------------------#
Date = rownames(data_clust)
# interval_estimated
#cluster 1(HB)
data=log(1+data_clust[1:dim(data_clust)[1],'cluster1'])
qq <- c(1,sort(final[[1]]),dim(data_clust)[1])
# plot fitting data
dataplot <- data.frame(y=as.vector(data))
date <- as.Date(Date,"%m/%d/%Y")
dataplot[['Date']] <- date
fig1<-ggplot(dataplot,aes(Date))
phase<-c(1,2,3,4,5,6)
phase_num<-c(14,33,10,15,18,52)
xintercept<-c(date[14],date[47],date[57],date[72],date[90])
fig1 <- fig1 +
geom_point(data = dataplot, aes(y=y)) +
labs(title = expression(italic(paste('Cluster 1(HB)'))),x='', y=expression(paste("log(1+infection)")),fill="") +
mytheme
fgh2 <- deriv(y ~ alpha1*z1+alpha2*z2+b*pnorm(beta1+beta2*x)+a, c("a", "b", "beta1", "beta2",'alpha1','alpha2'), function(a, b, beta1, beta2, alpha1,alpha2,x,z1,z2){} )
df.delta_data <- data.frame(x.new= c(), f.new= numeric(), lwr.conf=numeric(),upr.conf=numeric(),
lwr.pred=numeric(),upr.pred=numeric(),phase=numeric())
#-----------------------------------------------------------------------------------------------#
# this section aim to predict the next part according to previous part
pred_x.new_1=list()
pred_f.new_1=list()
if(length(final)!=0){
for (item in 1:(length(qq)-2)) {
sat=item
a<-as.numeric(qq[sat])+1
b=as.numeric(qq[sat+1])
x.new <- seq((b), qq[sat+2], by=1)
nlm2 <- fun_fit(a,b,data[a:b])$fit
beta2.est <- coef(nlm2)
z1_num<-data[b-1]#t-1
z2_num<-data[b-2]#t-2
pred_x.new_1[[item]] <- dataplot[b:qq[sat+2],2]
cat('part',item+1,'a=',beta2.est[1],'b=',beta2.est[2],'beta1=',beta2.est[3],'beta2=',beta2.est[4],'alpha1=', beta2.est[5],'alpha2=',beta2.est[6],'\n')
pred_f.new_1[[item]] <- predict_fun(beta2.est[1],beta2.est[2],beta2.est[3],beta2.est[4], beta2.est[5],beta2.est[6],x.new,z1_num,z2_num)
}
}
#-----------------------------------------------------------------------------------------------#
residual_list_1=list()
for(i in 2:length(qq)){
b<-as.numeric(qq[i])
if((i-1)==1){
cat('a1','now b is',b,'\n')
a <- as.numeric(qq[i-1])
nlm <- fun_fit(a,b,data[a:b])$fit
residual_list_1[[1]]=c(data[a:(a+1)],fitted(nlm))-data[a:b]
data_one <- data.frame(x.new=dataplot[a:b,2],f.new=c(data[a:(a+1)],fitted(nlm)),lwr.conf=c(data[a:(a+1)],fitted(nlm))
,upr.conf=c(data[a:(a+1)],fitted(nlm)),lwr.pred=c(data[a:(a+1)],fitted(nlm)),upr.pred=c(data[a:(a+1)],fitted(nlm)))
data_one['phase']<-rep(phase[i-1],phase_num[i-1])
df.delta_data <- rbind(df.delta_data,data_one)
}else{
cat('b1\n')
a<-as.numeric(qq[i-1])+1
x.new <- seq((a+2), qq[i], by=1)
nlm2 <- fun_fit(a,b,data[a:b])$fit
beta2.est <- coef(nlm2)
z1<-data[(a+1):(b-1)]#t-1
z2<-data[(a):(b-2)]#t-2
f.new <- fgh2(beta2.est[1],beta2.est[2],beta2.est[3],beta2.est[4], beta2.est[5],beta2.est[6],x.new,z1,z2)
residual_list_1[[i-1]]=c(data[a:(a+1)],f.new)-data[a:b]
print(class(f.new))
g.new <- attr(f.new,"gradient")
# f.new <-as.numeric(c(f.new[1:2],f.new))
# g.new<-rbind(g.new[1:2,],g.new)
V.beta2 <- vcov(nlm2)
GS=rowSums((g.new[,1:6]%*%V.beta2)%*%t(g.new[,1:6]))
head(GS)
alpha <- 0.05
df <- length(data[a:b])-length(beta2.est)#freedom degree
deltaf <- sqrt(GS)*qt(1-alpha/2,df)
if(max(deltaf)>20){
df.delta <- data.frame(x.new=dataplot[a:b,2], f.new=c(data[a:(a+1)],f.new), lwr.conf=c(data[a:(a+1)],f.new), upr.conf=c(data[a:(a+1)],f.new))
}else{
df.delta <- data.frame(x.new=dataplot[a:b,2], f.new=c(data[a:(a+1)],f.new), lwr.conf=c(data[a:(a+1)],f.new-deltaf), upr.conf=c(data[a:(a+1)],f.new+deltaf))
}
head(df.delta)
sigma2.est <- summary(nlm2)$sigma
deltay <- sqrt(GS + sigma2.est^2)*qt(1-alpha/2,df)
line_dataframa<-data.frame(x.new=dataplot[a:b,2], f.new=as.numeric(c(data[a:(a+1)],f.new)))
if(max(deltay)>20){
df.delta[c("lwr.pred","upr.pred")] <- cbind(c(data[a:(a+1)],f.new),c(data[a:(a+1)],f.new))
}else{
df.delta[c("lwr.pred","upr.pred")] <- cbind(c(data[a:(a+1)],f.new - deltay),c(data[a:(a+1)],f.new + deltay))
}
df.delta['phase']<-rep(phase[i-1],phase_num[i-1])
df.delta_data<-rbind(df.delta_data,df.delta)
}
}
pred_plot_sim[[1]]=df.delta_data
residual_list[[1]]=residual_list_1
color <- c('red','blue','green','pink','yellow','red','blue','pink','green','yellow')
xintercept<-c(date[14],date[47],date[57],date[72],date[90])
fig1 <- fig1 +
# geom_ribbon(data=df.delta_data, aes(x=x.new, ymin=lwr.pred, ymax=upr.pred), alpha=0.2, fill='black') +
geom_ribbon(data=df.delta_data, aes(x=x.new, ymin=lwr.conf, ymax=upr.conf), alpha=0.4,fill=color[1]) +#, group=phase,fill=phase
geom_line(data=df.delta_data, aes(x=x.new, y=f.new), size=1,colour=color[1])+#, colour=phase
ylim(0,12.5)+
geom_line(data=data.frame(x=c(date[14],date[14]),y=c(data[14]-0.7,data[14]+1)),aes(x=x,y=y),linetype='longdash',size=1,color=color[1])+
geom_line(data=data.frame(x=c(date[47],date[47]),y=c(data[47]-1,data[47]+1)),aes(x=x,y=y),linetype='longdash',size=1,color=color[1])+
geom_line(data=data.frame(x=c(date[57],date[57]),y=c(data[57]-1,data[57]+1)),aes(x=x,y=y),linetype='longdash',size=1,color=color[1])+
geom_line(data=data.frame(x=c(date[72],date[72]),y=c(data[72]-1,data[72]+1)),aes(x=x,y=y),linetype='longdash',size=1,color=color[1])+
geom_line(data=data.frame(x=c(date[90],date[90]),y=c(data[90]-1,data[90]+1)),aes(x=x,y=y),linetype='longdash',size=1,color=color[1])
fig1 <- fig1 +
scale_x_date(breaks =as.Date(c("2019-12-01","2020-01-01","2020-02-01","2020-03-01","2020-04-01","2020-04-20")),date_labels="%y/%m/%d")+
annotate(geom='text',x=as.Date(c("2019-12-28")),y=1.5,label="2019-12-14",size=7)+
annotate(geom='text',x=as.Date(c("2020-01-30")),y=3.8,label="2020-01-16",size=7)+
annotate(geom='text',x=as.Date(c("2020-02-09")),y=6.8,label="2020-01-26",size=7)+
annotate(geom='text',x=as.Date(c("2020-01-25")),y=10.5,label="2020-02-10",size=7)+
annotate(geom='text',x=as.Date(c("2020-03-19")),y=10.5,label="2020-02-28",size=7)+
theme_bw() +
mytheme+
labs(tag = "A") +
theme(plot.tag.position = c(0.05, 1))+
theme(plot.tag=element_text(size = 30))
if(length(pred_x.new_1)!=0){
pred_plot_test=list()
for (i in 1:length(pred_x.new_1)) {
cat(pred_x.new_1[[i]],'\n')
pred_data=data.frame(x.new=pred_x.new_1[[i]],f.new=pred_f.new_1[[i]])
pred_plot_test[[i]]=pred_data
fig1 <- fig1 +
geom_line(data=pred_data, aes(x=x.new, y=f.new),shape = 2, size=1,colour='#F8766D')
}
pred_plot[[1]]=pred_plot_test
}
fig1
#cluster 2(....)
data=log(1+data_clust[1:dim(data_clust)[1],'cluster2'])
qq <- c(1,sort(final[[2]]),dim(data_clust)[1])
# plot fitting data
dataplot <- data.frame(y=as.vector(data))
date <- as.Date(Date,"%m/%d/%Y")
dataplot[['Date']] <- date
phase<-c(11,12,13,14)
phase_num<-c(54,10,17,61)
fig2<-ggplot(dataplot,aes(Date))
fig2 <- fig2 +
geom_point(data = dataplot, aes(y=y)) +
labs(title = expression(italic(paste('Cluster 2(GD,ZJ,HA,HN,AH,JX,SD,JS,SC,CQ,BJ,SH,HL,\n HE,FJ,SN,GX,YN,HI,LN,SX,TJ,GZ,GS,NM,JL,XJ,NX)'))),
x='', y=expression(paste("log(1+infection)")),fill="") +
mytheme
fgh2 <- deriv(y ~ alpha1*z1+alpha2*z2+b*pnorm(beta1+beta2*x)+a, c("a", "b", "beta1", "beta2",'alpha1','alpha2'), function(a, b, beta1, beta2, alpha1,alpha2,x,z1,z2){} )
df.delta_data <- data.frame(x.new= c(), f.new= numeric(), lwr.conf=numeric(),upr.conf=numeric(),
lwr.pred=numeric(),upr.pred=numeric(),phase=numeric())
#-----------------------------------------------------------------------------------------------#
# this section aim to predict the next part according to previous part
pred_x.new_2=list()
pred_f.new_2=list()
if(length(final)!=0){
for (item in 1:(length(qq)-2)) {
sat=item
a<-as.numeric(qq[sat])+1
b=as.numeric(qq[sat+1])
x.new <- seq((b), qq[sat+2], by=1)
nlm2 <- fun_fit(a,b,data[a:b])$fit
beta2.est <- coef(nlm2)
z1_num<-data[b-1]#t-1
z2_num<-data[b-2]#t-2
pred_x.new_2[[item]] <- dataplot[b:qq[sat+2],2]
cat('part',item+1,'a=',beta2.est[1],'b=',beta2.est[2],'beta1=',beta2.est[3],'beta2=',beta2.est[4],'alpha1=', beta2.est[5],'alpha2=',beta2.est[6],'\n')
pred_f.new_2[[item]] <- predict_fun(beta2.est[1],beta2.est[2],beta2.est[3],beta2.est[4], beta2.est[5],beta2.est[6],x.new,z1_num,z2_num)
}
}
#-----------------------------------------------------------------------------------------------#
residual_list_2=list()
for(i in 2:length(qq)){
b<-as.numeric(qq[i])
if((i-1)==1){
cat('a1\n')
a <- as.numeric(qq[i-1])
nlm <- fun_fit(a,b,data[a:b])$fit
residual_list_2[[1]]=c(data[a:(a+1)],fitted(nlm))-data[a:b]
data_one <- data.frame(x.new=dataplot[a:b,2],f.new=c(data[a:(a+1)],fitted(nlm)),lwr.conf=c(data[a:(a+1)],fitted(nlm))
,upr.conf=c(data[a:(a+1)],fitted(nlm)),lwr.pred=c(data[a:(a+1)],fitted(nlm)),upr.pred=c(data[a:(a+1)],fitted(nlm)))
data_one['phase']<-rep(phase[i-1],phase_num[i-1])
df.delta_data <- rbind(df.delta_data,data_one)
}else{
cat('b1\n')
a<-as.numeric(qq[i-1])+1
x.new <- seq((a+2), qq[i], by=1)
nlm2 <- fun_fit(a,b,data[a:b])$fit
beta2.est <- coef(nlm2)
z1<-data[(a+1):(b-1)]#t-1
z2<-data[(a):(b-2)]#t-2
f.new <- fgh2(beta2.est[1],beta2.est[2],beta2.est[3],beta2.est[4], beta2.est[5],beta2.est[6],x.new,z1,z2)
residual_list_2[[i-1]]=c(data[a:(a+1)],f.new)-data[a:b]
print(class(f.new))
g.new <- attr(f.new,"gradient")
# f.new <-as.numeric(c(f.new[1:2],f.new))
# g.new<-rbind(g.new[1:2,],g.new)
V.beta2 <- vcov(nlm2)
GS=rowSums((g.new[,1:6]%*%V.beta2)%*%t(g.new[,1:6]))
head(GS)
alpha <- 0.05
df <- length(data[a:b])-length(beta2.est)#freedom degree
deltaf <- sqrt(GS)*qt(1-alpha/2,df)
if(max(deltaf)>20){
df.delta <- data.frame(x.new=dataplot[a:b,2], f.new=c(data[a:(a+1)],f.new), lwr.conf=c(data[a:(a+1)],f.new), upr.conf=c(data[a:(a+1)],f.new))
}else{
df.delta <- data.frame(x.new=dataplot[a:b,2], f.new=c(data[a:(a+1)],f.new), lwr.conf=c(data[a:(a+1)],f.new-deltaf), upr.conf=c(data[a:(a+1)],f.new+deltaf))
}
head(df.delta)
sigma2.est <- summary(nlm2)$sigma
deltay <- sqrt(GS + sigma2.est^2)*qt(1-alpha/2,df)
line_dataframa<-data.frame(x.new=dataplot[a:b,2], f.new=as.numeric(c(data[a:(a+1)],f.new)))
if(max(deltay)>20){
df.delta[c("lwr.pred","upr.pred")] <- cbind(c(data[a:(a+1)],f.new),c(data[a:(a+1)],f.new))
}else{
df.delta[c("lwr.pred","upr.pred")] <- cbind(c(data[a:(a+1)],f.new - deltay),c(data[a:(a+1)],f.new + deltay))
}
df.delta['phase']<-rep(phase[i-1],phase_num[i-1])
df.delta_data<-rbind(df.delta_data,df.delta)
}
}
residual_list[[2]]=residual_list_2
fig2 <- fig2 +
# geom_ribbon(data=df.delta_data, aes(x=x.new, ymin=lwr.pred, ymax=upr.pred), alpha=0.2, fill='black') +
geom_ribbon(data=df.delta_data, aes(x=x.new, ymin=lwr.conf, ymax=upr.conf), alpha=0.4, fill=color[2]) +
geom_line(data=df.delta_data, aes(x=x.new, y=f.new), size=1, colour=color[2])+
ylim(-0.1,12.5)+
geom_line(data=data.frame(x=c(date[54],date[54]),y=c(data[54]-1,data[54]+1)),aes(x=x,y=y),linetype='longdash',size=1,color=color[2])+
geom_line(data=data.frame(x=c(date[64],date[64]),y=c(data[64]-1,data[64]+1)),aes(x=x,y=y),linetype='longdash',size=1,color=color[2])+
geom_line(data=data.frame(x=c(date[81],date[81]),y=c(data[81]-1,data[81]+1)),aes(x=x,y=y),linetype='longdash',size=1,color=color[2])
fig2 <- fig2 +
scale_x_date(breaks =as.Date(c("2019-12-01","2020-01-01","2020-02-01","2020-03-01","2020-04-01","2020-04-20")),date_labels="%y/%m/%d")+
annotate(geom='text',x=as.Date(c("2020-02-05")),y=5.3,label="2020-1-23",size=7)+
annotate(geom='text',x=as.Date(c("2020-01-15")),y=8.2,label="2020-02-02",size=7)+
annotate(geom='text',x=as.Date(c("2020-03-04")),y=10,label="2020-02-19",size=7)+
theme_bw() +
mytheme+
labs(tag = "B") +
theme(plot.tag.position = c(0.05, 1))+
theme(plot.tag=element_text(size = 30))
if(length(pred_x.new_2)!=0){
pred_plot_test=list()
for (i in 1:length(pred_x.new_2)) {
cat(pred_x.new_2[[i]],'\n')
pred_data=data.frame(x.new=pred_x.new_2[[i]],f.new=pred_f.new_2[[i]])
pred_plot_test[[i]]=pred_data
fig2 <- fig2 +
geom_line(data=pred_data, aes(x=x.new, y=f.new),shape = 2, size=1,colour='#F8766D')
}
# pred_plot[[1]]=pred_plot_test
}
fig2
# Cluster 3(TW) AND Cluster 4(HK)
# cluster3data
data=log(1+data_clust[1:dim(data_clust)[1],'cluster3'])
data3<-data
qq <- c(1,sort(final[[3]]),dim(data_clust)[1])
# plot fitting data
dataplot <- data.frame(y=as.vector(data))
date <- as.Date(Date,"%m/%d/%Y")
dataplot[['Date']] <- date
phase<-c('Cluster 3','Cluster 3','Cluster 3','Cluster 3')
phase_num<-c(56,20,15,51)
fig34<-ggplot(dataplot,aes(Date))
fig34 <- fig34 +
geom_point(data = dataplot, aes(y=y)) +
labs(title = expression(italic(paste('Cluster 3(TW) and Cluster 4(HK)'))),
x='', y=expression(paste("log(1+infection)")),fill="") +
mytheme
fgh2 <- deriv(y ~ alpha1*z1+alpha2*z2+b*pnorm(beta1+beta2*x)+a, c("a", "b", "beta1", "beta2",'alpha1','alpha2'), function(a, b, beta1, beta2, alpha1,alpha2,x,z1,z2){} )
df.delta_data1 <- data.frame(x.new= c(), f.new= numeric(), lwr.conf=numeric(),upr.conf=numeric(),
lwr.pred=numeric(),upr.pred=numeric(),phase=numeric())
#-----------------------------------------------------------------------------------------------#
# this section aim to predict the next part according to previous part
pred_x.new_3=list()
pred_f.new_3=list()
if(length(final)!=0){
for (item in 1:(length(qq)-2)) {
sat=item
a<-as.numeric(qq[sat])+1
b=as.numeric(qq[sat+1])
x.new <- seq((b), qq[sat+2], by=1)
nlm2 <- fun_fit(a,b,data[a:b])$fit
beta2.est <- coef(nlm2)
z1_num<-data[b-1]#t-1
z2_num<-data[b-2]#t-2
pred_x.new_3[[item]] <- dataplot[b:qq[sat+2],2]
cat('part',item+1,'a=',beta2.est[1],'b=',beta2.est[2],'beta1=',beta2.est[3],'beta2=',beta2.est[4],'alpha1=', beta2.est[5],'alpha2=',beta2.est[6],'\n')
pred_f.new_3[[item]] <- predict_fun(beta2.est[1],beta2.est[2],beta2.est[3],beta2.est[4], beta2.est[5],beta2.est[6],x.new,z1_num,z2_num)
}
}
#-----------------------------------------------------------------------------------------------#
residual_list_3=list()
for(i in 2:length(qq)){
b<-as.numeric(qq[i])
if((i-1)==1){
cat('a1\n')
a <- as.numeric(qq[i-1])
nlm <- fun_fit(a,b,data[a:b])$fit
residual_list_3[[1]]=c(data[a:(a+1)],fitted(nlm))-data[a:b]
data_one <- data.frame(x.new=dataplot[a:b,2],f.new=c(data[a:(a+1)],fitted(nlm)),lwr.conf=c(data[a:(a+1)],fitted(nlm))
,upr.conf=c(data[a:(a+1)],fitted(nlm)),lwr.pred=c(data[a:(a+1)],fitted(nlm)),upr.pred=c(data[a:(a+1)],fitted(nlm)))
data_one['phase']<-rep(phase[i-1],phase_num[i-1])
df.delta_data1 <- rbind(df.delta_data1,data_one)
}else{
cat('b1\n')
a<-as.numeric(qq[i-1])+1
x.new <- seq((a+2), qq[i], by=1)
nlm2 <- fun_fit(a,b,data[a:b])$fit
beta2.est <- coef(nlm2)
z1<-data[(a+1):(b-1)]#t-1
z2<-data[(a):(b-2)]#t-2
f.new <- fgh2(beta2.est[1],beta2.est[2],beta2.est[3],beta2.est[4], beta2.est[5],beta2.est[6],x.new,z1,z2)
residual_list_3[[i-1]]=c(data[a:(a+1)],f.new)-data[a:b]
print(class(f.new))
g.new <- attr(f.new,"gradient")
# f.new <-as.numeric(c(f.new[1:2],f.new))
# g.new<-rbind(g.new[1:2,],g.new)
V.beta2 <- vcov(nlm2)
GS=rowSums((g.new[,1:6]%*%V.beta2)%*%t(g.new[,1:6]))
head(GS)
alpha <- 0.05
df <- length(data[a:b])-length(beta2.est)#freedom degree
deltaf <- sqrt(GS)*qt(1-alpha/2,df)
if(max(deltaf)>20){
df.delta <- data.frame(x.new=dataplot[a:b,2], f.new=c(data[a:(a+1)],f.new), lwr.conf=c(data[a:(a+1)],f.new), upr.conf=c(data[a:(a+1)],f.new))
}else{
df.delta <- data.frame(x.new=dataplot[a:b,2], f.new=c(data[a:(a+1)],f.new), lwr.conf=c(data[a:(a+1)],f.new-deltaf), upr.conf=c(data[a:(a+1)],f.new+deltaf))
}
head(df.delta)
sigma2.est <- summary(nlm2)$sigma
deltay <- sqrt(GS + sigma2.est^2)*qt(1-alpha/2,df)
line_dataframa<-data.frame(x.new=dataplot[a:b,2], f.new=as.numeric(c(data[a:(a+1)],f.new)))
if(max(deltay)>20){
df.delta[c("lwr.pred","upr.pred")] <- cbind(c(data[a:(a+1)],f.new),c(data[a:(a+1)],f.new))
}else{
df.delta[c("lwr.pred","upr.pred")] <- cbind(c(data[a:(a+1)],f.new - deltay),c(data[a:(a+1)],f.new + deltay))
}
df.delta['phase']<-rep(phase[i-1],phase_num[i-1])
df.delta_data1<-rbind(df.delta_data1,df.delta)
}
}
residual_list[[3]]=residual_list_3
#cluster4 data
data=log(1+data_clust[1:dim(data_clust)[1],'cluster4'])
data4<-data
qq <- c(1,sort(final[[4]]),dim(data_clust)[1])
# plot fitting data
dataplot <- data.frame(y=as.vector(data))
date <- as.Date(Date,"%m/%d/%Y")
dataplot[['Date']] <- date
phase<-c('Cluster 4','Cluster 4','Cluster 4','Cluster 4')
phase_num<-c(57,11,15,59)
# fig2<-ggplot(dataplot,aes(Date))
fig34 <- fig34 +
geom_point(data = dataplot, aes(y=y)) +
mytheme
fgh2 <- deriv(y ~ alpha1*z1+alpha2*z2+b*pnorm(beta1+beta2*x)+a, c("a", "b", "beta1", "beta2",'alpha1','alpha2'), function(a, b, beta1, beta2, alpha1,alpha2,x,z1,z2){} )
df.delta_data2 <- data.frame(x.new= c(), f.new= numeric(), lwr.conf=numeric(),upr.conf=numeric(),
lwr.pred=numeric(),upr.pred=numeric(),phase=numeric())
#-----------------------------------------------------------------------------------------------#
# this section aim to predict the next part according to previous part
pred_x.new_4=list()
pred_f.new_4=list()
if(length(final)!=0){
for (item in 1:(length(qq)-2)) {
sat=item
a<-as.numeric(qq[sat])+1
b=as.numeric(qq[sat+1])
x.new <- seq((b), qq[sat+2], by=1)
nlm2 <- fun_fit(a,b,data[a:b])$fit
beta2.est <- coef(nlm2)
z1_num<-data[b-1]#t-1
z2_num<-data[b-2]#t-2
pred_x.new_4[[item]] <- dataplot[b:qq[sat+2],2]
cat('part',item+1,'a=',beta2.est[1],'b=',beta2.est[2],'beta1=',beta2.est[3],'beta2=',beta2.est[4],'alpha1=', beta2.est[5],'alpha2=',beta2.est[6],'\n')
pred_f.new_4[[item]] <- predict_fun(beta2.est[1],beta2.est[2],beta2.est[3],beta2.est[4], beta2.est[5],beta2.est[6],x.new,z1_num,z2_num)
}
}
#-----------------------------------------------------------------------------------------------#
residual_list_4=list()
for(i in 2:length(qq)){
b<-as.numeric(qq[i])
if((i-1)==1){
cat('a1\n')
a <- as.numeric(qq[i-1])
}else{
cat('b1\n')
a<-as.numeric(qq[i-1])+1
}
x.new <- seq((a+2), qq[i], by=1)
nlm2 <- fun_fit(a,b,data[a:b])$fit
beta2.est <- coef(nlm2)
z1<-data[(a+1):(b-1)]#t-1
z2<-data[(a):(b-2)]#t-2
f.new <- fgh2(beta2.est[1],beta2.est[2],beta2.est[3],beta2.est[4], beta2.est[5],beta2.est[6],x.new,z1,z2)
residual_list_4[[i-1]]=c(data[a:(a+1)],f.new)-data[a:b]
print(class(f.new))
g.new <- attr(f.new,"gradient")
# f.new <-as.numeric(c(f.new[1:2],f.new))
# g.new<-rbind(g.new[1:2,],g.new)
V.beta2 <- vcov(nlm2)
GS=rowSums((g.new[,1:6]%*%V.beta2)%*%t(g.new[,1:6]))
head(GS)
alpha <- 0.05
df <- length(data[a:b])-length(beta2.est)#freedom degree
deltaf <- sqrt(GS)*qt(1-alpha/2,df)
if(max(deltaf)>20){
df.delta <- data.frame(x.new=dataplot[a:b,2], f.new=c(data[a:(a+1)],f.new), lwr.conf=c(data[a:(a+1)],f.new), upr.conf=c(data[a:(a+1)],f.new))
}else{
df.delta <- data.frame(x.new=dataplot[a:b,2], f.new=c(data[a:(a+1)],f.new), lwr.conf=c(data[a:(a+1)],f.new-deltaf), upr.conf=c(data[a:(a+1)],f.new+deltaf))
}
head(df.delta)
sigma2.est <- summary(nlm2)$sigma
deltay <- sqrt(GS + sigma2.est^2)*qt(1-alpha/2,df)
line_dataframa<-data.frame(x.new=dataplot[a:b,2], f.new=as.numeric(c(data[a:(a+1)],f.new)))
if(max(deltay)>20){
df.delta[c("lwr.pred","upr.pred")] <- cbind(c(data[a:(a+1)],f.new),c(data[a:(a+1)],f.new))
}else{
df.delta[c("lwr.pred","upr.pred")] <- cbind(c(data[a:(a+1)],f.new - deltay),c(data[a:(a+1)],f.new + deltay))
}
df.delta['phase']<-rep(phase[i-1],phase_num[i-1])
df.delta_data2<-rbind(df.delta_data2,df.delta)
}
residual_list[[4]]=residual_list_4
df.delta_data<-rbind(df.delta_data1,df.delta_data2)
fig34 <- fig34 +
# geom_ribbon(data=df.delta_data, aes(x=x.new, ymin=lwr.pred, ymax=upr.pred, group=phase), alpha=0.2, fill='black') +
geom_ribbon(data=df.delta_data, aes(x=x.new, ymin=lwr.conf, ymax=upr.conf, group=phase,fill=phase), alpha=0.4) +
geom_line(data=df.delta_data, aes(x=x.new, y=f.new,colour=phase, group=phase), size=1)+
ylim(-0.1,12.5)+
scale_fill_manual(values=c('red','blue'),name='Province')+
scale_colour_manual(values=c('red','blue'),name='Province')+
#cluster3
geom_line(data=data.frame(x=c(date[56],date[56]),y=c(data3[56]-1,data3[56]+1)),aes(x=x,y=y),linetype='longdash',size=1,color='red')+
geom_line(data=data.frame(x=c(date[76],date[76]),y=c(data3[76]-1,data3[76]+1)),aes(x=x,y=y),linetype='longdash',size=1,color='red')+
geom_line(data=data.frame(x=c(date[91],date[91]),y=c(data3[91]-1,data3[91]+1)),aes(x=x,y=y),linetype='longdash',size=1,color='red')+
#cluster4
geom_line(data=data.frame(x=c(date[57],date[57]),y=c(data4[57]-1,data4[57]+1)),aes(x=x,y=y),linetype='longdash',size=1,color='blue')+
geom_line(data=data.frame(x=c(date[68],date[68]),y=c(data4[68]-1,data4[68]+1)),aes(x=x,y=y),linetype='longdash',size=1,color='blue')+
geom_line(data=data.frame(x=c(date[83],date[83]),y=c(data4[83]-1,data4[83]+1)),aes(x=x,y=y),linetype='longdash',size=1,color='blue')
fig34 <- fig34 +
scale_x_date(breaks =as.Date(c("2019-12-01","2020-01-01","2020-02-01","2020-03-01","2020-04-01","2020-04-20")),date_labels="%y/%m/%d")+
# cluster4HK
annotate(geom='text',x=as.Date(c("2020-01-12")),y=2,label="2020-01-26",size=7)+
annotate(geom='text',x=as.Date(c("2020-01-23")),y=3.5,label="2020-02-06",size=7)+
annotate(geom='text',x=as.Date(c("2020-02-07")),y=4.8,label="2020-02-21",size=7)+
#cluster4TW
annotate(geom='text',x=as.Date(c("2020-02-08")),y=1.5,label="2020-01-25",size=7)+
annotate(geom='text',x=as.Date(c("2020-02-28")),y=2.5,label="2020-02-14",size=7)+
annotate(geom='text',x=as.Date(c("2020-03-14")),y=3.5,label="2020-02-29",size=7)+
theme_bw() +
mytheme+
theme(legend.position=c(0.15,0.85))+theme(legend.title = element_blank())+
theme(legend.background = element_blank())+
theme(legend.text = element_text(size=20))+
theme(legend.key.size = unit(40, "pt"))+
labs(tag = "C") +
theme(plot.tag.position = c(0.05, 1))+
theme(plot.tag=element_text(size = 30))
if(length(pred_x.new_3)!=0){
for (i in 1:length(pred_x.new_3)) {
cat(pred_x.new_3[[i]],'\n')
pred_data=data.frame(x.new=pred_x.new_3[[i]],f.new=pred_f.new_3[[i]])
fig34 <- fig34 +
geom_line(data=pred_data, aes(x=x.new, y=f.new),shape = 2, size=1,colour='#F8766D')
}
}
if(length(pred_x.new_4)!=0){
for (i in 1:length(pred_x.new_4)) {
cat(pred_x.new_4[[i]],'\n')
pred_data=data.frame(x.new=pred_x.new_4[[i]],f.new=pred_f.new_4[[i]])
fig34 <- fig34 +
geom_line(data=pred_data, aes(x=x.new, y=f.new),shape = 2, size=1,colour='#B79F00')
}
}
fig34
#cluster 5(MO),cluster 6(QH),cluster 7(XZ)
# cluster5
data=log(1+data_clust[1:dim(data_clust)[1],'cluster5'])
data5<-data
qq <- c(1,sort(final[[5]]),dim(data_clust)[1])
# plot fitting data
dataplot <- data.frame(y=as.vector(data))
date <- as.Date(Date,"%m/%d/%Y")
dataplot[['Date']] <- date
phase<-c('Cluster 5','Cluster 5','Cluster 5')
phase_num<-c(56,42,44)
fig567<-ggplot(dataplot,aes(Date))
fig567 <- fig567 +
geom_point(data = dataplot, aes(y=y)) +
labs(title = expression(italic(paste('Cluster 5(MO), Cluster 6(QH) and Cluster 7(XZ)'))),
x='', y=expression(paste("log(1+infection)")),fill="") +
mytheme
fgh2 <- deriv(y ~ alpha1*z1+alpha2*z2+b*pnorm(beta1+beta2*x)+a, c("a", "b", "beta1", "beta2",'alpha1','alpha2'), function(a, b, beta1, beta2, alpha1,alpha2,x,z1,z2){} )
df.delta_data5 <- data.frame(x.new= c(), f.new= numeric(), lwr.conf=numeric(),upr.conf=numeric(),
lwr.pred=numeric(),upr.pred=numeric(),phase=numeric())
#-----------------------------------------------------------------------------------------------#
# this section aim to predict the next part according to previous part
pred_x.new_5=list()
pred_f.new_5=list()
if(length(final)!=0){
for (item in 1:(length(qq)-2)) {
sat=item
a<-as.numeric(qq[sat])+1
b=as.numeric(qq[sat+1])
x.new <- seq((b), qq[sat+2], by=1)
nlm2 <- fun_fit(a,b,data[a:b])$fit
beta2.est <- coef(nlm2)
z1_num<-data[b-1]#t-1
z2_num<-data[b-2]#t-2
pred_x.new_5[[item]] <- dataplot[b:qq[sat+2],2]
cat('part',item+1,'a=',beta2.est[1],'b=',beta2.est[2],'beta1=',beta2.est[3],'beta2=',beta2.est[4],'alpha1=', beta2.est[5],'alpha2=',beta2.est[6],'\n')
pred_f.new_5[[item]] <- predict_fun(beta2.est[1],beta2.est[2],beta2.est[3],beta2.est[4], beta2.est[5],beta2.est[6],x.new,z1_num,z2_num)
}
}
#-----------------------------------------------------------------------------------------------#
residual_list_5=list()
for(i in 2:length(qq)){
b<-as.numeric(qq[i])
if((i-1)==1){
cat('a1\n')
a <- as.numeric(qq[i-1])
}else{
cat('b1\n')
a<-as.numeric(qq[i-1])+1
}
x.new <- seq((a+2), qq[i], by=1)
nlm2 <- fun_fit(a,b,data[a:b])$fit
beta2.est <- coef(nlm2)
z1<-data[(a+1):(b-1)]#t-1
z2<-data[(a):(b-2)]#t-2
f.new <- fgh2(beta2.est[1],beta2.est[2],beta2.est[3],beta2.est[4], beta2.est[5],beta2.est[6],x.new,z1,z2)
residual_list_5[[i-1]]=c(data[a:(a+1)],f.new)-data[a:b]
print(class(f.new))
g.new <- attr(f.new,"gradient")
# f.new <-as.numeric(c(f.new[1:2],f.new))
# g.new<-rbind(g.new[1:2,],g.new)
V.beta2 <- vcov(nlm2)
GS=rowSums((g.new[,1:6]%*%V.beta2)%*%t(g.new[,1:6]))
head(GS)
alpha <- 0.05
df <- length(data[a:b])-length(beta2.est)#freedom degree
deltaf <- sqrt(GS)*qt(1-alpha/2,df)
if(max(deltaf)>20){
df.delta <- data.frame(x.new=dataplot[a:b,2], f.new=c(data[a:(a+1)],f.new), lwr.conf=c(data[a:(a+1)],f.new), upr.conf=c(data[a:(a+1)],f.new))
}else{
df.delta <- data.frame(x.new=dataplot[a:b,2], f.new=c(data[a:(a+1)],f.new), lwr.conf=c(data[a:(a+1)],f.new-deltaf), upr.conf=c(data[a:(a+1)],f.new+deltaf))
}
head(df.delta)
sigma2.est <- summary(nlm2)$sigma
deltay <- sqrt(GS + sigma2.est^2)*qt(1-alpha/2,df)
line_dataframa<-data.frame(x.new=dataplot[a:b,2], f.new=as.numeric(c(data[a:(a+1)],f.new)))
if(max(deltay)>20){
df.delta[c("lwr.pred","upr.pred")] <- cbind(c(data[a:(a+1)],f.new),c(data[a:(a+1)],f.new))
}else{
df.delta[c("lwr.pred","upr.pred")] <- cbind(c(data[a:(a+1)],f.new - deltay),c(data[a:(a+1)],f.new + deltay))
}
df.delta['phase']<-rep(phase[i-1],phase_num[i-1])
df.delta_data5<-rbind(df.delta_data5,df.delta)
}
residual_list[[5]]=residual_list_5
# cluster6
data=log(1+data_clust[1:dim(data_clust)[1],'cluster6'])
data6<-data
qq <- c(1,sort(final[[6]]),dim(data_clust)[1])
# plot fitting data
dataplot <- data.frame(y=as.vector(data))
date <- as.Date(Date,"%m/%d/%Y")
dataplot[['Date']] <- date
phase<-c('Cluster 6','Cluster 6')
phase_num<-c(61,81)
fig567 <- fig567 +
geom_point(data = dataplot, aes(y=y)) +
mytheme
fgh2 <- deriv(y ~ alpha1*z1+alpha2*z2+b*pnorm(beta1+beta2*x)+a, c("a", "b", "beta1", "beta2",'alpha1','alpha2'), function(a, b, beta1, beta2, alpha1,alpha2,x,z1,z2){} )
df.delta_data6 <- data.frame(x.new= c(), f.new= numeric(), lwr.conf=numeric(),upr.conf=numeric(),
lwr.pred=numeric(),upr.pred=numeric(),phase=numeric())
#-----------------------------------------------------------------------------------------------#
# this section aim to predict the next part according to previous part
pred_x.new_6=list()
pred_f.new_6=list()
if(length(final)!=0){
for (item in 1:(length(qq)-2)) {
sat=item
a<-as.numeric(qq[sat])+1
b=as.numeric(qq[sat+1])
x.new <- seq((b), qq[sat+2], by=1)
nlm2 <- fun_fit(a,b,data[a:b])$fit
beta2.est <- coef(nlm2)
z1_num<-data[b-1]#t-1
z2_num<-data[b-2]#t-2
pred_x.new_6[[item]] <- dataplot[b:qq[sat+2],2]
cat('part',item+1,'a=',beta2.est[1],'b=',beta2.est[2],'beta1=',beta2.est[3],'beta2=',beta2.est[4],'alpha1=', beta2.est[5],'alpha2=',beta2.est[6],'\n')
pred_f.new_6[[item]] <- predict_fun(beta2.est[1],beta2.est[2],beta2.est[3],beta2.est[4], beta2.est[5],beta2.est[6],x.new,z1_num,z2_num)
}
}
#-----------------------------------------------------------------------------------------------#
residual_list_6=list()
for(i in 2:length(qq)){
b<-as.numeric(qq[i])
if((i-1)==1){
cat('a1\n')
a <- as.numeric(qq[i-1])
}else{
cat('b1\n')
a<-as.numeric(qq[i-1])+1
}
x.new <- seq((a+2), qq[i], by=1)
nlm2 <- fun_fit(a,b,data[a:b])$fit
beta2.est <- coef(nlm2)
z1<-data[(a+1):(b-1)]#t-1
z2<-data[(a):(b-2)]#t-2
f.new <- fgh2(beta2.est[1],beta2.est[2],beta2.est[3],beta2.est[4], beta2.est[5],beta2.est[6],x.new,z1,z2)
residual_list_6[[i-1]]=c(data[a:(a+1)],f.new)-data[a:b]
print(class(f.new))
g.new <- attr(f.new,"gradient")
# f.new <-as.numeric(c(f.new[1:2],f.new))
# g.new<-rbind(g.new[1:2,],g.new)
V.beta2 <- vcov(nlm2)
GS=rowSums((g.new[,1:6]%*%V.beta2)%*%t(g.new[,1:6]))
head(GS)
alpha <- 0.05
df <- length(data[a:b])-length(beta2.est)#freedom degree
deltaf <- sqrt(GS)*qt(1-alpha/2,df)
if(max(deltaf)>20){
df.delta <- data.frame(x.new=dataplot[a:b,2], f.new=c(data[a:(a+1)],f.new), lwr.conf=c(data[a:(a+1)],f.new), upr.conf=c(data[a:(a+1)],f.new))
}else{
df.delta <- data.frame(x.new=dataplot[a:b,2], f.new=c(data[a:(a+1)],f.new), lwr.conf=c(data[a:(a+1)],f.new-deltaf), upr.conf=c(data[a:(a+1)],f.new+deltaf))
}
head(df.delta)
sigma2.est <- summary(nlm2)$sigma
deltay <- sqrt(GS + sigma2.est^2)*qt(1-alpha/2,df)
line_dataframa<-data.frame(x.new=dataplot[a:b,2], f.new=as.numeric(c(data[a:(a+1)],f.new)))
if(max(deltay)>20){
df.delta[c("lwr.pred","upr.pred")] <- cbind(c(data[a:(a+1)],f.new),c(data[a:(a+1)],f.new))
}else{
df.delta[c("lwr.pred","upr.pred")] <- cbind(c(data[a:(a+1)],f.new - deltay),c(data[a:(a+1)],f.new + deltay))
}
df.delta['phase']<-rep(phase[i-1],phase_num[i-1])
df.delta_data6<-rbind(df.delta_data6,df.delta)
}
residual_list[[6]]=residual_list_6
#cluster7
data=log(1+data_clust[1:dim(data_clust)[1],'cluster7'])
data7<-data
qq <- c(1,sort(final[[7]]),dim(data_clust)[1])
# plot fitting data
dataplot <- data.frame(y=as.vector(data))
date <- as.Date(Date,"%m/%d/%Y")
dataplot[['Date']] <- date
phase<-c('Cluster 7')
phase_num<-c(142)
fig567 <- fig567 +
geom_point(data = dataplot, aes(y=y)) +
mytheme
fgh2 <- deriv(y ~ alpha1*z1+alpha2*z2+b*pnorm(beta1+beta2*x)+a, c("a", "b", "beta1", "beta2",'alpha1','alpha2'), function(a, b, beta1, beta2, alpha1,alpha2,x,z1,z2){} )
df.delta_data7 <- data.frame(x.new= c(), f.new= numeric(), lwr.conf=numeric(),upr.conf=numeric(),
lwr.pred=numeric(),upr.pred=numeric(),phase=numeric())
residual_list_7=list()
for(i in 2:length(qq)){
b<-as.numeric(qq[i])
if((i-1)==1){
cat('a1\n')
a <- as.numeric(qq[i-1])
nlm <- fun_fit(a,b,data[a:b])$fit
residual_list_7[[1]]=c(data[a:(a+1)],fitted(nlm))-data[a:b]
data_one <- data.frame(x.new=dataplot[a:b,2],f.new=c(data[a:(a+1)],fitted(nlm)),lwr.conf=c(data[a:(a+1)],fitted(nlm))
,upr.conf=c(data[a:(a+1)],fitted(nlm)),lwr.pred=c(data[a:(a+1)],fitted(nlm)),upr.pred=c(data[a:(a+1)],fitted(nlm)))
data_one['phase']<-rep(phase[i-1],phase_num[i-1])
df.delta_data7 <- rbind(df.delta_data7,data_one)
}else{
cat('b1\n')
a<-as.numeric(qq[i-1])+1
x.new <- seq((a+2), qq[i], by=1)
nlm2 <- fun_fit(a,b,data[a:b])$fit
beta2.est <- coef(nlm2)
z1<-data[(a+1):(b-1)]#t-1
z2<-data[(a):(b-2)]#t-2
f.new <- fgh2(beta2.est[1],beta2.est[2],beta2.est[3],beta2.est[4], beta2.est[5],beta2.est[6],x.new,z1,z2)
residual_list_7[[i-1]]=c(data[a:(a+1)],f.new)-data[a:b]
print(class(f.new))
g.new <- attr(f.new,"gradient")
# f.new <-as.numeric(c(f.new[1:2],f.new))
# g.new<-rbind(g.new[1:2,],g.new)
V.beta2 <- vcov(nlm2)
GS=rowSums((g.new[,1:6]%*%V.beta2)%*%t(g.new[,1:6]))
head(GS)
alpha <- 0.05
df <- length(data[a:b])-length(beta2.est)#freedom degree
deltaf <- sqrt(GS)*qt(1-alpha/2,df)
if(max(deltaf)>20){
df.delta <- data.frame(x.new=dataplot[a:b,2], f.new=c(data[a:(a+1)],f.new), lwr.conf=c(data[a:(a+1)],f.new), upr.conf=c(data[a:(a+1)],f.new))
}else{
df.delta <- data.frame(x.new=dataplot[a:b,2], f.new=c(data[a:(a+1)],f.new), lwr.conf=c(data[a:(a+1)],f.new-deltaf), upr.conf=c(data[a:(a+1)],f.new+deltaf))
}
head(df.delta)
sigma2.est <- summary(nlm2)$sigma
deltay <- sqrt(GS + sigma2.est^2)*qt(1-alpha/2,df)
line_dataframa<-data.frame(x.new=dataplot[a:b,2], f.new=as.numeric(c(data[a:(a+1)],f.new)))
if(max(deltay)>20){
df.delta[c("lwr.pred","upr.pred")] <- cbind(c(data[a:(a+1)],f.new),c(data[a:(a+1)],f.new))
}else{
df.delta[c("lwr.pred","upr.pred")] <- cbind(c(data[a:(a+1)],f.new - deltay),c(data[a:(a+1)],f.new + deltay))
}
df.delta['phase']<-rep(phase[i-1],phase_num[i-1])
df.delta_data7<-rbind(df.delta_data7,df.delta)
}
}
residual_list[[7]]=residual_list_7
df.delta_data<-rbind(df.delta_data5,df.delta_data6,df.delta_data7)
fig567 <- fig567 +
# geom_ribbon(data=df.delta_data, aes(x=x.new, ymin=lwr.pred, ymax=upr.pred, group=phase), alpha=0.2, fill='black') +
geom_ribbon(data=df.delta_data, aes(x=x.new, ymin=lwr.conf, ymax=upr.conf, group=phase,fill=phase), alpha=0.4) +
geom_line(data=df.delta_data, aes(x=x.new, y=f.new,colour=phase, group=phase), size=1)+
ylim(-0.1,12.5)+
scale_fill_manual(values=c('red','blue','#FF8C00'),name='Province')+
scale_colour_manual(values=c('red','blue','#FF8C00'),name='Province')+
#cluster5
geom_line(data=data.frame(x=c(date[56],date[56]),y=c(data5[56]-1,data5[56]+1)),aes(x=x,y=y),linetype='longdash',size=1,color='red')+
geom_line(data=data.frame(x=c(date[98],date[98]),y=c(data5[98]-1,data5[98]+1)),aes(x=x,y=y),linetype='longdash',size=1,color='red')+
#cluster6
geom_line(data=data.frame(x=c(date[61],date[61]),y=c(data6[61]-1,data6[61]+1)),aes(x=x,y=y),linetype='longdash',size=1,color='blue')
fig567 <- fig567 +
scale_x_date(breaks =as.Date(c("2019-12-01","2020-01-01","2020-02-01","2020-03-01","2020-04-01","2020-04-20")),date_labels="%y/%m/%d")+
#cluster5
annotate(geom='text',x=as.Date(c("2020-01-10")),y=1,label="2020-1-25",size=7)+
annotate(geom='text',x=as.Date(c("2020-03-22")),y=2,label="2020-03-07",size=7)+
# cluster6
annotate(geom='text',x=as.Date(c("2020-01-15")),y=2.5,label="2020-01-30",size=7)+
theme_bw() +
mytheme+
theme(legend.position=c(0.15,0.8))+theme(legend.title = element_blank())+
theme(legend.background = element_blank())+
theme(legend.text = element_text(size=20))+
theme(legend.key.size = unit(40, "pt"))+
labs(tag = "D") +
theme(plot.tag.position = c(0.05, 1))+
theme(plot.tag=element_text(size = 30))
if(length(pred_x.new_5)!=0){
for (i in 1:length(pred_x.new_5)) {
cat(pred_x.new_5[[i]],'\n')
pred_data=data.frame(x.new=pred_x.new_5[[i]],f.new=pred_f.new_5[[i]])
fig567 <- fig567 +
geom_line(data=pred_data, aes(x=x.new, y=f.new),shape = 2, size=1,colour='#F8766D')
}
}
if(length(pred_x.new_6)!=0){
for (i in 1:length(pred_x.new_6)) {
cat(pred_x.new_6[[i]],'\n')
pred_data=data.frame(x.new=pred_x.new_6[[i]],f.new=pred_f.new_6[[i]])
fig567 <- fig567 +
geom_line(data=pred_data, aes(x=x.new, y=f.new),shape = 2, size=1,colour='#B79F00')
}
}
fig567
empty <- ggplot() + geom_point(aes(1, 1), colour = "white") +
theme(axis.ticks = element_blank(),
panel.background = element_blank(),
axis.line = element_blank(),
axis.text.x = element_blank(), axis.text.y = element_blank(),
axis.title.x = element_blank(), axis.title.y = element_blank())
tu <- grid.arrange(fig1,fig2,fig34,fig567,nrow=1,ncol=4)
return(list(pred_plot=pred_plot,residual_list=residual_list,pred_plot_sim=pred_plot_sim))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.