rankflassopath | R Documentation |
Computes the rank fused-Lasso regression estimates for given fused penalty value lambda_2 and for a range of lambda_1 values
rankflassopath(y, X, lambda2, L = 120, eps = 0.001, printitn = F)
y |
: numeric response N x 1 vector (real/complex) |
X |
: numeric feature N x p matrix (real/complex) |
lambda2 |
: positive penalty parameter for the fused Lasso penalty term |
L |
: number of grid points for lambda1 (Lasso penalty) |
eps |
: Positive scalar, the ratio of the smallest to the largest Lambda value in the grid. Default is eps = 10^-4. |
printitn |
: print iteration number (default = F, no printing) |
B: Fitted rank fused-Lasso regression coefficients, a p-by-(L+1) matrix, where p is the number of predictors (columns) in X, and L is the number of Lambda values.
B0: estimates values of intercepts
lamgrid: = lambda parameters
rankflassopath()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.