View source: R/regression_ranklassopath.R
| ranklassopath | R Documentation | 
ranklassopath computes the rank LAD-Lasso regularization path (over grid of penalty parameter values). Uses IRWLS algorithm.
ranklassopath(y, X, L = 120, eps = 0.001, reltol = 1e-07, printitn = F)
| y: | Numeric data vector of size N (output, respones) | 
| X: | Numeric data matrix of size N x p. Each row represents one observation, and each column represents one predictor (feature). | 
| L: | Positive integer, the number of lambda values on the grid to be used. The default is L=120. | 
| eps: | Positive scalar, the ratio of the smallest to the largest Lambda value in the grid. Default is eps = 10^-3. | 
| reltol: | Convergence threshold for IRWLS. Terminate when successive estimates differ in L2 norm by a rel. amount less than reltol. | 
| printitn: | print iteration number (default = F, no printing) | 
B: Fitted RLAD-Lasso regression coefficients, a p-by-(L+1) matrix, where p is the number of predictors (columns) in X, and L is the number of Lambda values.
B0: estimates values of intercepts
stats: structure with following fields: Lambda = lambda parameters in ascending order GMeAD = Mean Absolute Deviation (MeAD) of the residuals gBIC = generalized Bayesian information criterion (gBIC) value for each lambda parameter on the grid.
File location : regression_ranklassopath.R
data('prostate')
X <- prostate$X
y <- c(prostate$y)
namess <- unlist(prostate$names)
n <- nrow(X)
p <- ncol(X)
Xone <- cbind(rep(1,n), X)
LSE <- qr.solve(Xone, y) # Least squares estimate
GRlen <- 120
yout <- y
yout[1] <- yout[1] + 55
ranklassopath(yout, X)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.