clustifyr classifies cells and clusters in single-cell RNA sequencing experiments using reference bulk RNA-seq data sets, sorted microarray expression data, single-cell gene signatures, or lists of marker genes.
Install the Bioconductor version with:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("clustifyr")
Install the development version with:
BiocManager::install("rnabioco/clustifyr")
In this example we use the following built-in input data:
pbmc_matrix_small)pbmc_meta), with cluster information stored
("classified")pbmc_vargenes)cbmc_ref)We then calculate correlation coefficients and plot them on a
pre-calculated projection (stored in pbmc_meta).
library(clustifyr)
# calculate correlation
res <- clustify(
input = pbmc_matrix_small,
metadata = pbmc_meta$classified,
ref_mat = cbmc_ref,
query_genes = pbmc_vargenes
)
# print assignments
cor_to_call(res)
#> # A tibble: 9 × 3
#> # Groups: cluster [9]
#> cluster type r
#> <chr> <chr> <dbl>
#> 1 B B 0.909
#> 2 CD14+ Mono CD14+ Mono 0.915
#> 3 FCGR3A+ Mono CD16+ Mono 0.929
#> 4 Memory CD4 T CD4 T 0.861
#> 5 Naive CD4 T CD4 T 0.889
#> 6 DC DC 0.849
#> 7 Platelet Mk 0.732
#> 8 CD8 T NK 0.826
#> 9 NK NK 0.894
# plot assignments on a projection
plot_best_call(
cor_mat = res,
metadata = pbmc_meta,
cluster_col = "classified"
)

clustify() can take a clustered SingleCellExperiment or seurat
object (from v2 up to v5) and assign identities.
# for SingleCellExperiment
sce_small <- sce_pbmc()
clustify(
input = sce_small, # an SCE object
ref_mat = cbmc_ref, # matrix of RNA-seq expression data for each cell type
cluster_col = "cell_type", # name of column in meta.data containing cell clusters
obj_out = TRUE # output SCE object with cell type inserted as "type" column
)
#> class: SingleCellExperiment
#> dim: 2000 2638
#> metadata(0):
#> assays(2): counts logcounts
#> rownames(2000): PPBP LYZ ... CLIC2 HEMGN
#> rowData names(0):
#> colnames(2638): AAACATACAACCAC AAACATTGAGCTAC ... TTTGCATGAGAGGC
#> TTTGCATGCCTCAC
#> colData names(8): cell_source sum ... type r
#> reducedDimNames(1): UMAP
#> mainExpName: NULL
#> altExpNames(0):
# for Seurat
library(Seurat)
s_small <- so_pbmc()
clustify(
input = s_small,
cluster_col = "RNA_snn_res.0.5",
ref_mat = cbmc_ref,
seurat_out = TRUE
)
#> An object of class Seurat
#> 2000 features across 2638 samples within 1 assay
#> Active assay: RNA (2000 features, 2000 variable features)
#> 2 layers present: counts, data
#> 1 dimensional reduction calculated: umap
# New output option, directly as a vector (in the order of the metadata), which can then be inserted into metadata dataframes and other workflows
clustify(
input = s_small,
cluster_col = "RNA_snn_res.0.5",
ref_mat = cbmc_ref,
vec_out = TRUE
)[1:10]
#> [1] "CD4 T" "B" "CD4 T" "CD14+ Mono" "NK"
#> [6] "CD4 T" "NK" "NK" "CD4 T" "CD16+ Mono"
New reference matrix can be made directly from SingleCellExperiment
and Seurat objects as well. Other scRNAseq experiment object types are
supported as well.
# make reference from SingleCellExperiment objects
sce_small <- sce_pbmc()
sce_ref <- object_ref(
input = sce_small, # SCE object
cluster_col = "cell_type" # name of column in colData containing cell identities
)
# make reference from seurat objects
s_small <- so_pbmc()
s_ref <- seurat_ref(
seurat_object = s_small,
cluster_col = "RNA_snn_res.0.5"
)
head(s_ref)
#> 0 1 2 3 4 5
#> PPBP 0.04883837 0.06494743 0.28763857 0.09375021 0.35662599 0.2442300
#> LYZ 1.40165143 1.39466552 5.21550849 1.42699419 1.35146753 3.4034309
#> S100A9 0.55679700 0.58080250 4.91453355 0.62123058 0.58823794 2.6277996
#> IGLL5 0.03116080 0.04826212 0.02434753 2.44576997 0.03284986 0.2581198
#> GNLY 0.46041901 0.41001072 0.53592906 0.37877736 2.53161887 0.2903092
#> FTL 3.35611600 3.31062958 5.86217774 3.66698837 3.37056910 5.9518479
#> 6 7 8
#> PPBP 0.00000000 0.06527347 6.0941782
#> LYZ 1.32701580 4.84714962 2.5303912
#> S100A9 0.52098541 2.53310734 1.6775692
#> IGLL5 0.05247669 0.10986617 0.2501642
#> GNLY 4.70481754 0.46959958 0.3845813
#> FTL 3.38471536 4.21848878 4.5508242
clustify_lists() handles identity assignment of matrix or
SingleCellExperiment and seurat objects based on marker gene lists.
clustify_lists(
input = pbmc_matrix_small,
metadata = pbmc_meta,
cluster_col = "classified",
marker = pbmc_markers,
marker_inmatrix = FALSE
)
#> 0 1 2 3 4 5 6
#> Naive CD4 T 1.5639055 20.19469 31.77095 8.664074 23.844992 19.06931 19.06931
#> Memory CD4 T 1.5639055 20.19469 31.77095 10.568007 23.844992 17.97875 19.06931
#> CD14+ Mono 0.9575077 14.70716 76.21353 17.899569 11.687739 49.86699 16.83210
#> B 0.6564777 12.70976 31.77095 26.422929 13.536295 20.19469 13.53630
#> CD8 T 1.0785353 17.97875 31.82210 12.584823 31.822099 22.71234 40.45383
#> FCGR3A+ Mono 0.6564777 13.63321 72.43684 17.899569 9.726346 56.48245 14.61025
#> NK 0.6564777 14.61025 31.82210 7.757206 31.822099 22.71234 45.05072
#> DC 0.6564777 15.80598 63.34978 19.069308 13.758144 40.56298 17.97875
#> Platelet 0.5428889 13.34769 59.94938 14.215244 15.158755 46.92861 19.49246
#> 7 8
#> Naive CD4 T 6.165348 0.6055118
#> Memory CD4 T 6.165348 0.9575077
#> CD14+ Mono 25.181595 1.0785353
#> B 17.899569 0.1401901
#> CD8 T 7.882145 0.3309153
#> FCGR3A+ Mono 21.409177 0.3309153
#> NK 5.358651 0.3309153
#> DC 45.101877 0.1401901
#> Platelet 19.492465 59.9493793
clustify_lists(
input = s_small,
marker = pbmc_markers,
marker_inmatrix = FALSE,
cluster_col = "RNA_snn_res.0.5",
seurat_out = TRUE
)
#> An object of class Seurat
#> 2000 features across 2638 samples within 1 assay
#> Active assay: RNA (2000 features, 2000 variable features)
#> 2 layers present: counts, data
#> 1 dimensional reduction calculated: umap
Script
for benchmarking, compatible with
scRNAseq_Benchmark
Additional reference data (including tabula muris, immgen, etc) are
available in a supplemental package
clustifyrdatahub.
Also see
list
for individual downloads.
See the FAQ for more details.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.