R/histogramPlot.R

Defines functions histogramPlot

Documented in histogramPlot

#' Plot histogram of correlations.
#'
#' \code{histogramPlot} plots histograms of correlation values in expression data and
#'	its reference.
#'
#' @param X A matrix or a list of matrices of estimated gene-gene correlations.
#' @param Y A matrix of reference gene-gene correlations (i.e. known underlying correlation structure).
#' @param legend A vector of character strings describing the data contained in \code{X} and \code{Y}.
#' @param title A character string describing title.
#' @param col.X A vector or character string defining the color/colors associated with the data contained in \code{X}.
#' @param col.Y The color associated with the data in \code{Y}.
#' @param line A vector giving the line type.
#' @return \code{histogramPlot} returns a plot.
#'
#' @inheritParams graphics::hist
#' @details
#' The default for breaks is \code{"Sturges"}.
#' Other names for which algorithms are supplied are \code{"Scott"} and \code{"FD"} / \code{"Freedman-Diaconis"} 
#' Case is ignored and partial 
#' matching is used. Alternatively, a function can be supplied which will compute the 
#' intended number of breaks or the actual breakpoints as a function of \code{x}.
#' @examples
#' Y<-simulateGEdata(500, 500, 10, 2, 5, g=NULL, Sigma.eps=0.1, 250, 100, check.input=FALSE)
#' Y.hat<-RUVNaiveRidge(Y, center=TRUE, nc_index=251:500, 0, 10, check.input=FALSE)
#' Y.hat.cor<-cor(Y.hat[,1:100])
#' try(dev.off(), silent=TRUE)
#' histogramPlot(Y.hat.cor, Y$Sigma[1:100,1:100], title="Simulated data", legend=c("RUV", "Truth"))
#' try(dev.off(), silent=TRUE)
#' histogramPlot(list(Y.hat.cor, cor(Y$Y[,1:100])), Y$Sigma[1:100,1:100],
#' title="Simulated data", col.Y="black", legend=c("RUV", "Raw", "Truth"))
#' @author Saskia Freytag
#' @export
histogramPlot<-function(
						X, #Matrix or list of matrices of estimated correlations.
						Y, #Matrix of reference correlations.
						legend, #Vector of characters describing input matrices
						breaks=40, 
						title,
						col.X="red",
						col.Y="black",
						line=NULL
						){

	if(class(X)=="matrix"){
		X<-X[lower.tri(X)]
		Y<-Y[lower.tri(Y)]
		max.val<-max(c(max(density(X)$y),max(density(Y)$y)))
		hist(Y, freq=FALSE, xlim=c(-1,1), breaks=breaks, ylim=c(0,max.val),
		main=paste(title), xlab="Correlation Size", border=col.Y)
		if(is.null(line)) line<-1
		lines(density(X), col=col.X, lwd=2, lty=line) 
		legend("topleft", paste(legend), bty="n" ,lty=1, lwd=3, cex=0.95, ncol=1, col=c(col.X,col.Y))
	}
	
	if(class(X)=="list"){
		if(length(col.X)!=length(X)){
			warning("Specified colors are no longer valid.")
		
			#require(grDevices)
			col.X<-hcl(h = seq(0,360,round(360/length(X),2)), c=45, l=70)[1:length(X)]
		}
		X<-lapply(X, function(x) x[lower.tri(x)])
		Y<-Y[lower.tri(Y)]
		max.val<-max(c(max(unlist(lapply(X, function(x) max(density(x)$y)))), max(density(Y)$y)))
		hist(Y, freq=FALSE, xlim=c(-1,1), breaks=breaks, ylim=c(0,max.val),
		main=paste(title), xlab="Correlation Size", border=col.Y)
		if(is.null(line)) line<-rep(1, length(X))
		
		for(i in 1:length(X)){
			lines(density(X[[i]]), col=col.X[i], lwd=2, lty=line)
		}
		
		legend("topleft", paste(legend), bty="n" ,lty=1, lwd=3, cex=0.95, ncol=1, col=c(col.X,col.Y))
	}						

}
						
PeteHaitch/RUVcorr documentation built on May 9, 2017, 5:43 p.m.