#' Pre-processing plugin for manual/templated gating
#'
#' @param fs a \code{flowSet} object containing the samples within a group to be
#' gated.
#' @param gs the original \code{GatingSet} containing all samples with attached
#' compensation, transformations and gates.
#' @param gm the name of the gating method.
#' @param channels markers or channels to use for gating.
#' @param groupBy a colon separated character string specifying the names of the
#' variables to use to group the samples prior to gating, set to NA by default
#' to group all samples.
#' @param isCollapse logical indicating whether the data for the current group
#' is collapsed prior to gating, set to NA by default.
#' @param ... not in use.
#'
#' @return \code{pp_gate_template()} returns the name of the current group so it
#' can be used to extract the appropriate gate(s) in \code{gate_template()}.
#'
#' @importFrom flowWorkspace sampleNames pData
#'
#' @author Dillon Hammill, \email{Dillon.Hammill@ozette.com}
#'
#' @noRd
.pp_gate_template <- function(fs,
gs,
gm,
channels,
groupBy = NA,
isCollapse = NA,
...) {
# gates are created for each unique group in groupBy
# fs contains samples for current group to gate
# we obtain group index by searching for group containing all samples in fs
# group is identified by name to ensure correct matching
# names used in gates must include group variables separated by " "
# prepare groupBy - split out grouping variables
if(is.character(groupBy)) {
if(nchar(groupBy) == 0) {
groupBy <- NA
} else {
groupBy <- unlist(strsplit(groupBy, ":"))
}
}
# experiment details
pd <- pData(gs)
# grouping
if(!all(is.na(groupBy))) {
# variable names supplied
if(all(grepl("^[A-Za-z]+$", groupBy, ignore.case = TRUE))) {
# check for valid variable names
if(!all(groupBy %in% colnames(pd))) {
stop(
"'groupBy' references variables that don't exist in the GatingSet!"
)
}
# split experiment details by grouping variables
groups <- split(
pd, pd[, groupBy],
sep = " ",
lex.order = TRUE,
drop = TRUE
)
# locate group containing all samples in fs -> group name
ind <- names(groups)[
unlist(
lapply(
groups,
function(group) {
all(sampleNames(fs) %in% c(rownames(group), group$name))
}
)
)
]
# numeric grouping is not supported - inconsistent gate order
} else {
if(groupBy == length(gs)) {
ind <- 1
} else {
message(
"Numeric groupBy is not supported. Grouping all samples."
)
ind <- 1
}
}
# no grouping - use first set of gates
} else {
ind <- 1
}
# return group index or name (preferred)
return(ind)
}
#' Gating plugin for manual/templated gating
#'
#' @param fr a \code{flowFrame} object containing the collapsed data for a
#' sample group to be gated.
#' @param pp_res indicates the name of the current sample group as provided by
#' \code{pp_gate_template()}.
#' @param channels names of the channels or markers in which the supplied
#' \code{gate(s)} were constructed.
#' @param gate list of filters per sample group each named based on the levels
#' of the grouping variables separated by \code{" "}.
#' \code{generate_gate_template()} should be used to create the
#' \code{gatingTemplate} so that the gates can be appropriately formatted and
#' passed to \code{gate_template()} through the gatingTemplate
#' \code{gating_args}.
#' @param ... not in use.
#'
#' @return a list of filters for the current sample group to be used for gating.
#'
#' @author Dillon Hammill, \email{Dillon.Hammill@ozette.com}
#'
#' @noRd
.gate_template <- function(fr,
pp_res,
channels,
gate,
...) {
# gate = list of filters per sample group (all groups)
# pp_res = name of sample group to extract gate(s) from gate
# no sample groups - apply first set of gates to all samples
if(is.null(pp_res)) {
ind <- 1
}
# pp_res is index of gate(s) to extract for sample fr
if(is.numeric(pp_res)) {
ind <- pp_res
# pp_res is the name of sample group
} else if(is.character(pp_res)) {
# attempt to locate gate for sample group
ind <- match(
pp_res,
names(gate)
)
# sample group doesn't exist in the gatingTemplate
if(all(is.na(ind))) {
stop(
"The gatingTemplate doesn't contain gates for the ",
pp_res,
" sample group!"
)
}
}
# extract and apply matching set of gates
return(gate[[ind]])
}
#' Store gates from a GatingSet in a gatingTemplate for templated gating
#'
#' \code{generate_gate_template()} iterates through samples groups in a
#' GatingSet to extract and store existing gates into an openCyto
#' \code{gatingTemplate} that can be easily applied to new GatingSets using
#' \code{gt_gating()}.
#'
#' @param x a \code{GatingHierarchy} or \code{GatingSet} object.
#' @param groupBy a vector of variable names that exist in
#' \code{colnames(pData(x))} to split samples into groups before extracting
#' the gates specified by \code{nodes}, set to NA by default to produce
#' consensus gates across all samples.
#' @param nodes a vector of full node paths that exist in \code{x} for which
#' templated gating entries are required, set to all nodes in \code{x} by
#' default.
#' @param gatingTemplate logical to indicate whether a \code{gatingTemplate}
#' object should be returned, set to FALSE by default. \code{gatingTemplate}
#' objects can only be created when all nodes in \code{x} are specified.
#' @param save_as name of the CSV file to which the gatingTemplate entries
#' should be written, set to NULL to prevent the gatingTemplate from being
#' written to a CSV file.
#' @param ... additional arguments passed to \code{\link{gatingTemplate-class}}.
#'
#' @return either a \code{data.table} or \code{gatingTemplate} object containing
#' the requested gatingTemplate entries for downstream templated gating using
#' \code{gt_gating()}.
#'
#' @importFrom flowCore polygonGate rectangleGate quadGate filters
#' @importFrom flowWorkspace pData gh_pop_get_gate gh_get_pop_paths
#' gh_pop_get_data gh_pop_is_negated
#' @importFrom grDevices chull
#' @importFrom methods as
#' @importFrom data.table fwrite
#'
#' @author Dillon Hammill, \email{Dillon.Hammill@ozette.com}
#'
#' @examples
#' \dontrun{
#' # gs contains variable BioSampleType
#' pData(gs)$BioSampleType <- rep(c("cells", "beads"), each = 4)
#' # create gatingTemplate object
#' gt <- generate_gate_template(
#' gs,
#' groupBy = "BioSampleType",
#' gatingTemplate = TRUE,
#' save_as = "gatingTemplate.csv"
#' )
#' # gt is a gatingTemplate object
#' gt
#' # apply gt to a new GatingSet
#' gt_gating(
#' gt,
#' gs_new
#' )
#' }
#'
#' @export
generate_gate_template <- function(x,
groupBy = NA,
nodes = NULL,
gatingTemplate = FALSE,
save_as = NULL,
...) {
# NOTE: All samples in x must contain the same set of gates! We cannot
# generate gatingTemplate entries for clusters (i.e. labelled events) as
# these cannot be transferred to new GatingSets - only valid gate objects
# (e.g. booleanFilter, rectangleGate, ellipsoidGate, quadrantGate etc.) are
# supported.
# experiment details
pd <- pData(x)
# extract full node paths
nodes_full <- gh_get_pop_paths(
x[[1]],
path = "full"
)
# default nodes
if(is.null(nodes)) {
nodes <- nodes_full
# manual nodes
} else {
if(!all(nodes %in% nodes_full)) {
stop(
"'nodes' must contain full paths to nodes existing in the ",
class(x), "!"
)
}
}
# prepare groupBy - split samples into groups
if(!all(is.na(groupBy))) {
# split grouping variables
if(length(groupBy) == 1 & grepl("\\:", groupBy)) {
groupBy <- strsplit(
groupBy,
"\\:"
)[[1]]
}
# check groupBy for valid variables
if(!all(groupBy %in% colnames(pd))) {
stop(
"'groupBy' references variables that don't exist in pData(x)!"
)
}
}
# split details into groups by groupBy
if(all(is.na(groupBy))) {
pd_groups <- list(
pd
)
# group order doesn't matter
} else {
pd_groups <- split(
pd,
pd[, groupBy],
drop = TRUE,
sep = " "
)
}
# compute instrument limits - replace infinite co-ordinates
rng <- apply(
do.call(
"rbind",
lapply(
seq_along(x),
function(id) {
cf <- gh_pop_get_data(
x[[id]]
)
# determine range using instrument and data limits - data often lower
rbind(
range(cf, type = "instrument"),
range(cf, type = "data")
)
}
)
),
2,
"range"
)
# rename groupBy
group_by <- groupBy
# initialize gatingTemplate variables - CRAN R CMD CHECK NOTE
parent <- NULL
alias <- NULL
pop <- NULL
gating_method <- NULL
gating_args <- NULL
collapseDataForGating <- NULL
groupBy <- NULL
preprocessing_method <- NULL
# generate a bare bones gatingTemplate
gt <- gh_generate_template(x[[1]])
# split bare bones gatingTemplate by parent and dims
gt_chunks <- split(
gt,
gt[, c("parent", "dims")],
sep = "|",
drop = TRUE
)
# order gt_chunks by nodes - ensures node order correct in gatingTemplate
idx <- sapply(
gt_chunks,
function(gt_chunk) {
parent <- gt_chunk$parent
parent[parent == "root"] <- ""
alias <- unlist(strsplit(gt_chunk$alias, ","))
min(
match(
paste0(
parent,
"/",
alias
),
nodes
)
)
}
)
# drop unwanted nodes
gt_chunks <- gt_chunks[!is.na(idx)]
idx <- idx[!is.na(idx)]
# reorder gatingTemplate chunks
gt_chunks <- gt_chunks[order(idx)]
# construct gatingTemplate
gt_new <- do.call(
"rbind",
structure(
lapply(
gt_chunks,
function(gt_chunk) {
# parent
parent <- unique(gt_chunk$parent)
# channels
channels <- strsplit(unique(gt_chunk$dims), ",")[[1]]
# alias
alias <- gt_chunk$alias
# REQUIRE: list of filters per population in each sample
group_gate_list <- structure(
lapply(
pd_groups,
function(pd_group) {
# groupBy = NA -> all samples
if(all(is.na(groupBy))) {
idx <- seq_along(x)
# groupBy subset of samples
} else {
idx <- match(pd_group$name, pd$name)
}
# extract gates per sample in group
sample_gates <- lapply(
idx,
function(id) {
# extract gate objects
gate_list <- structure(
lapply(
alias,
function(pop) {
gate <- gh_pop_get_gate(
x[[id]],
paste0(
if(parent == "root") {
""
} else {
parent
},
"/",
pop
)
)
# inherit negated flag
attributes(gate)$negated <- gh_pop_is_negated(
x[[id]],
paste0(
if(parent == "root") {
""
} else {
parent
},
"/",
pop
)
)
return(gate)
}
),
names = alias
)
# format quadrant gates
quad_idx <- which(
sapply(
gate_list,
function(gate){
if(inherits(gate, "rectangleGate")) {
any(grepl("quad", names(attributes(gate))))
} else {
FALSE
}
}
)
)
# quadrants located
if(length(quad_idx) > 0) {
# pull out quadrant rectangleGates
quads <- gate_list[quad_idx]
# drop quadrants from gate_list
gate_list <- gate_list[-quad_idx]
# quadrant co-ordinates
coords <- do.call(
"rbind",
lapply(
quads,
function(quad) {
structure(
c(quad@min, quad@max),
names = parameters(quad)
)
}
)
)
# quadrant center
coords <- unlist(
sapply(
channels,
function(z) {
unique(coords[, z][is.finite(coords[, z])])
}
)
)
names(coords) <- channels
# create quadrantGate
quads <- list(
quadGate(
filterId = paste0(
names(attributes(quads[[1]])[["quadrants"]]),
collapse = "|"
),
.gate = coords
)
)
attributes(quads[[1]])$negated <- FALSE
gate_list <- c(quads, gate_list)
}
names(gate_list) <- sapply(
gate_list,
function(gate) {
gate@filterId
}
)
return(gate_list)
}
)
# construct gatingTemplate entries
structure(
lapply(
names(sample_gates[[1]]),
function(gate) {
# extract unique gates across samples in group
gates <- unique(
lapply(
sample_gates,
`[[`,
gate
)
)
# samples in group have different gates
if(length(gates) > 1) {
# multiRangeGate or QuadGate - use first gate
if(inherits(gates[[1]], "multiRangeGate") |
inherits(gates[[1]], "quadGate")) {
return(gates[[1]])
# 1-D rectangleGate
} else if(inherits(gates[[1]], "rectangleGate") &
length(parameters(gates[[1]])) == 1) {
# combine coords from each gate
coords <- do.call(
"rbind",
lapply(
gates,
function(pop) {
rbind(
pop@min,
pop@max
)
}
)
)
# coerce gates to polygon and chull
} else {
# combine coords from each gate
coords <- do.call(
"rbind",
lapply(
gates,
function(pop) {
as(pop, "polygonGate")@boundaries
}
)
)
}
# replace infinite co-ordinates with instrument limits
lapply(
colnames(coords),
function(chan) {
coords[, chan][
is.infinite(coords[, chan]) & coords[, chan] < 0
] <<- min(rng[, chan])
coords[, chan][
is.infinite(coords[, chan]) & coords[, chan] > 0
] <<- max(rng[, chan])
}
)
# 1-D gate - range
if(ncol(coords) == 1) {
# use range across all gates
chull <- rectangleGate(
.gate = apply(
coords,
2,
"range"
),
filterId = gate
)
# 2-D gate - chull
} else {
# get convex hull
chull <- coords[chull(coords), ]
# chull is a rectangle
if(nrow(chull) < 3) {
# construct rectangle
chull <- rectangleGate(
chull,
filterId = gate
)
# convert to valid polygon
chull <- as(
chull,
"polygonGate"
)
# chull is a polygon
} else {
# construct polygonGate
chull <- polygonGate(
.gate = chull,
filterId = gate
)
}
}
# inherit negated flag
attributes(chull)$negated <-
attributes(gates[[1]])$negated
# return consensus gate
return(chull)
# boolean gates captured here - shared logic
} else {
return(gates[[1]])
}
}
),
names = names(sample_gates[[1]])
)
}
)
)
# create gatingTemplate entries
do.call(
"rbind",
lapply(
names(group_gate_list[[1]]),
function(alias) {
# gate flags
bool <- FALSE
quad <- FALSE
negated <- FALSE
# get gates from each group
gates <- structure(
lapply(
group_gate_list,
function(gate_list) {
gate <- gate_list[[alias]]
# negated flag
negated <<- attributes(gate)$negated
# booleanFilter flag
if(inherits(gate, "booleanFilter")) {
bool <<- TRUE
return(
gate
)
# quadGates aren't wrapped in filters()
} else if(inherits(gate, "quadGate")) {
quad <<- TRUE
return(
gate_list[[alias]]
)
} else {
return(
filters(
gate_list[alias]
)
)
}
}
),
names = names(group_gate_list)
)
# create gatingTemplate entry
gt_entry <- as.data.table(gt_chunk[1, , drop = FALSE])
# alias
gate <- gsub("\\|", ",", alias)
# pop
if(negated) {
gt_entry[, pop := "-"]
} else {
gt_entry[, pop := "+"]
}
# alias
gt_entry[, alias := gate]
# preprocessing method
gt_entry[, preprocessing_method := "pp_gate_template"]
# gating method
gt_entry[, gating_method := "gate_template"]
# collapse data - required or need gate for every sample
gt_entry[, collapseDataForGating := TRUE]
# groupBy
if(all(is.na(group_by))) {
group_by <- NA
} else {
group_by <- paste0(
group_by,
collapse = ":"
)
}
gt_entry[, groupBy := group_by]
# booleanFilter
if(bool) {
gt_entry[, groupBy := NA]
gt_entry[, preprocessing_method := NA]
gt_entry[, gating_method := "boolGate"]
gt_entry[, gating_args := gates[[1]]@deparse]
gt_entry[, collapseDataForGating := NA]
# other gates handled above
} else {
if(quad) {
gt_entry[, pop := "*"]
}
gt_entry[, gating_args := .argDeparser(
list(
gate = gates,
openCyto.minEvents = -1
)
)]
}
return(gt_entry)
}
)
)
}
),
names = names(gt_chunks)
)
)
# write gatingTemplate to CSV file
if(!is.null(save_as)) {
fwrite(
gt_new,
file = save_as
)
}
# convert to gatingTemplate object - only if its complete
if(gatingTemplate & all(nodes %in% nodes_full)) {
gt_new <- gatingTemplate(
gt_new,
...
)
}
# return constructed gatingTemplate
return(gt_new)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.