DA.TukeyHSD | R Documentation |
TukeyHSD
on all features from DAtest
results with allResults = TRUE
Works on "aov", "lao", "lao2", "aoc", "aoa"
DA.TukeyHSD(results, variable = "predictor", p.adj = "fdr", ...)
results |
Output from a |
variable |
Which variable to test. Default predictor. Alternatively, the name of a covar |
p.adj |
P-value adjustment method. See |
... |
Additional arguments for |
A data.frame with output from TukeyHSD and adjusted p.values for each predictor and feature
# Creating random count_table and predictor set.seed(5) mat <- matrix(rnbinom(3000, size = 0.1, mu = 500), nrow = 100, ncol = 30) rownames(mat) <- 1:100 pred <- c(rep("A", 10), rep("B", 10), rep("C", 10)) # Run anova and then TukeyHSD on each predictor res <- DA.aov(data = mat, predictor = pred, allResults = TRUE) res.tuk <- DA.TukeyHSD(res)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.